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SOME ROBUST ESTIMATION TOOLS FOR 
MULTIVARIATE MODELS 

Jan Kalina 

 

Abstract 

Standard procedures of multivariate statistics and data mining for the analysis of multivariate 

data are known to be vulnerable to the presence of outlying and/or highly influential 

observations. This paper has the aim to propose and investigate specific approaches for two 

situations. First, we consider clustering of categorical data. While attention has been paid to 

sensitivity of standard statistical and data mining methods for categorical data only recently, 

we aim at modifying standard distance measures between clusters of such data. This allows us 

to propose a hierarchical agglomerative cluster analysis for two-way contingency tables with 

a large number of categories, based on a regularized measure of distance between two 

contingency tables. Such proposal improves the robustness to the presence of measurement 

errors for categorical data. As a second problem, we investigate the nonlinear version of the 

least weighted squares regression for data with a continuous response. Our aim is to propose 

an efficient algorithm for the least weighted squares estimator, which is formulated in a 

general way applicable to both linear and nonlinear regression. Our numerical study reveals 

the computational aspects of the algorithm and brings arguments in favor of its credibility. 
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1 Introduction 
Numerous procedures of multivariate statistics and data mining common for the analysis of 

multivariate data in economic applications are known to be sensitive to the presence of 

outlying and/or highly influential observations (Martinez et al., 2011). Therefore, their robust 

counterparts are highly desirable. Indeed, a variety of results on robust data mining or robust 

econometrics has been published recently (Filzmoser & Todorov, 2011; Belloni et al., 2014). 

       Also in the context of categorical data, standard procedures for hypothesis tests, 

association measures, clustering or classification trees are vulnerable to misclassified data, i.e. 

the methods are biased under a contaminated model, while outliers appear in discrete data 
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quite commonly, e.g. in the form of measurement errors (Buonaccorsi, 2011). Also the 

simplest tools (chi-square or likelihood-ratio statistics) are heavily influenced by the presence 

of structural or sampling zero counts (Agresti, 2002; Neykov et al., 2014). Still, only small 

attention has been paid to robust methods for categorical data. In Section 2, we derive a 

regularized distance measure between two contingency tables with a large number of 

categories, which is applicable e.g. to cluster analysis. 

Classical regression estimatorsfor data with a continous response suffer from the presence of 

outlying data (outliers) and a variety of robust statistical methods has been developed (Gentle 

et al., 2012). Some of them can be considered as reliable self-standing procedures suppressing 

the effect of data contamination. In Section 3, we propose an efficient algorithm for 

computation of the least weighted squares for a general context for both linear and nonlinear 

regression model. We discuss the choice of parameters for this algorithm. 

 

2 Regularized cluster analysis for contingency tables 
Cluster analysis represents a general information extraction methodology allowing to reveal 

the multivariate structure of given data and to divide multivariate data to subpopulations 

(Martinez et al., 2011; Kalina, 2012). It is often used as an exploratory technique for complex 

multivariate data and can be interpreted as an unsupervised dimensionality reduction 

technique. The statistical methodology however contains a gap of multivariate approaches for 

high-dimensional data, which are robust to the presence of noise (Kalina & Zvárová, 2013). 

This section proposes a robust measure of distance between two contingency tables, which 

may be used as a tool within hierarchical agglomerative cluster analysis for contingency 

tables with a large number of categories. Cluster analysis for such tables can be performed by 

standard algorithms, replacing habitually used distance measures by their regularized 

counterparts. The result is based on a regularized measure of distance between observations 

from a multinomial distribution. 

 

Tab. 1:Notation for the observed counts (example of Section 2)  

 Product 1 Product 2 ⋯ Product J ∑ 

Satisfied ݊ଵଵ ݊ଵଶ ⋯ ݊ଵ௃ ݊ଵ. 

Unsatisfied ݊ଶଵ ݊ଶଶ ⋯ ݊ଶ௃ ݊ଶ. 

∑ ݊.ଵ ݊.ଶ ⋯ ݊.௃ ݊ 

Source: Agresti (2013) 
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Tab. 2: Notation for the observed counts in the k-th stratum (example of Section 2) 

 Product 1 Product 2 ⋯ Product J ∑ 
Satisfied ݊ଵଵ௞ ݊ଵଶ௞ ⋯ ݊ଵ௃௞ ݊ଵ.௞ 
Unsatisfied ݊ଶଵ௞ ݊ଶଶ௞ ⋯ ݊ଶ௃௞ ݊ଶ.௞ 
∑ ݊.ଵ௞  ݊.ଶ௞  ⋯ ݊.௃௞  ݊..௞  
Source: Agresti (2013) 

We explain our model on an marketing example. A study of customer satisfaction has been 

performed with a large number of products J. The counts form a contingency table of size 

 ,However, the study is performed on K different places (sub-populations .(Table 1) ܬ ݔ 2

strata) and we expect the measurements to vary among different strata. The aim of the 

analysis is to perform a cluster analysis to find clusters of places. Thus, the observed data 

have the form of a set of K contingency tables 2 ܬ ݔ. In the k-th stratum, the observed data 

have the form of a contingency table, which is shown in Table 2. We do not work with 

Table 1, but with the total number of K tables with the form of Table 2. 

Each of the counts ݊௜௝௞ for ݅ ∈ {1,2}, ݆ = 1, … , ݇ and ,ܬ = 1, … ,  represents a realization of ,ܭ

a random variable ௜ܰ௝௞ , which follows a binomial distribution. We assume the probability of 

success is the same in each stratum. Let ߨ௝ denote the probability of success in the j-th column 

of the table (across strata).  

      Cluster analysis with the task to find clusters of products (groups) among the total number 

of J products can be interpreted as a dimensionality reduction applied to the space of columns 

of the contingency table. It  requires to measure the similarity between the contingency table 

corresponding to the k-th stratum and an analogous table corresponding to the ݇ᇱ-th stratum. 

Because of the large value of J, various such measures (e.g. phi coefficient) should be 

replaced by their regularized counterparts, based on regularized versions of ߯ଶ or ܩଶ test 

statistics. 

A suitable regularization is known as a tool ensuring robustness in the context of categorical 

data (Hastie et al., 2008).We propose to regularize the probability ݌௝  of the success in the j-th 

column in the form 

∗௝݌ = (1 − ௝݌(ߣ + ߣ ௡భ..
௡…

,                                                    (1)   

where ݌௝  is the maximum likelihood estimate of success in the j-th column across 

observations and ߣ ∈ (0,1) is a parameter. Here we use the notation 

݊… =  ∑ ݊..௞
௄
௞ୀଵ     and      ݊ଵ.. =  ∑ ∑ ݊ଵ௝௞ .௄

௞ୀଵ
௃
௝ୀଵ                  (2)   
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Particularly, ݌௝∗ can be expressed as 

∗௝݌        = (1 − (ߣ ௡భೕ.

௡.ೕ.
+ ߣ ௡భ..

௡…
.             (3) 

       Our main result is the optimal value of the regularization parameter, which minimizes the 

mean square error of (3) over all ߣ ∈ (0,1). While the majority of regularized data mining 

methods relies on a cross validation in order to assess a suitable value of the parameter, we 

derive the optimal value of ߣ under the assumption that ܬ → ∞. 

      We propose to estimate ߣ by 

,∗ߣ}݊݅݉ 1},     (4) 

where the solution of the minimization of the mean square error has an explicit expression as  

∗ߣ =
ଵି∑ ቆ

೙భೕ.
೙.ೕ.

ቇ
మ

಻
ೕసభ

(௡ିଵ)∑ ቆ೙భ..
೙…

ି
೙భೕ.
೙.ೕ.

ቇ
మ

಻
ೕసభ

.                                                   (5)     

The proof is based on the idea of asymptotically optimal value of the regularization parameter 

for financial time series of (Ledoit & Wolf, 2003). Nevertheless, the form of (4) ensures the 

value of the regularization parameter to be bounded between 0 and 1. 

      Now, we can express the regularized versions of the ߯ଶand ܩଶ statistics as  

߯∗ଶ = ∑ ∑ ቈ
ቀ௡భೕೖି ௡.ೕೖ௣ೕ

∗ቁ
మ

௡.ೕೖ௣ೕ
∗ +

ቀ௡మೕೖି ௡.భೖ(ଵି௣ೕ
∗)ቁ

మ

௡.ೕೖ(ଵି௣ೕ
∗)

቉௄
௞ୀଵ

௃
௝ୀଵ       (6)                   

and 

ଶ∗ܩ = ෍෍ቈ݊ଵ௝௞݈݃݋
݊ଵ௝௞
݊.௝௞݌௝∗

+ ݊ଶ௝௞݈݃݋
݊ଶ௝௞

݊.௝௞(1 − (∗௝݌
቉ .

௄

௞ୀଵ

௃

௝ୀଵ

                              (7) 

       As a consequence, it is possible to define a regularized phi coefficient  

߮∗ =  ටఞ∗మ

௡
         (8) 

as a measure of distance between two contingency tables. Thus, the cluster analysis can be 

performed by one of existing algorithms according to a selected linkage criterion. The 

regularized phi coefficient is not only the distance between two observations, but plays the 

role of a distance between two clusters. Other distance measures may be defined based on the 

  .ଶ statistic (Agresti, 2013)∗ܩ

       To summarize this section, a tailor-made approach for the analysis of categorical data 

with a large number of categories and small observed samples is proposed and an asymptotic 

result (4) is derived. The method can be interpreted as robust to measurement errors. On the 

other hand, it assumes the probabilities ݌ଵ, … ,  ௃ to be relatively homogeneous in order to݌
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justify a biased estimation of the probability in a particular category by means of borrowing 

information in (1) across all categories. The regularized association measures may be used 

within clustering algorithms e.g. in strategic management, credit risk management or 

instrumental variables estimation (Belloni et al., 2014), where a large dimensionality is 

commonly encountered. 

 

3 Least weighted squares estimator for linear and nonlinear models   
 

3.1 A general algorithm 

The least weighted squares (LWS) estimator (Víšek, 2011) and its analogy for nonlinear 

regression, which can be denoted as the nonlinear least weighted squares (NLWS) estimator, 

can be described as one a few existing robust regression methods with a high breakdown 

point, i.e. with a high resistance (insensitivity) against outlying measurements in the data 

(Gentle et al., 2012). A general algorithm jointly for the LWS in a linear model and for the 

NLWS estimator in nonlinear regression is proposed in this section. Further, the performance 

of the NLWS estimator is shown on real data and we study computational aspects of the 

algorithm. 

       The LWS estimator has appealing properties like other statistical methods based on ranks 

of observations (Saleh et al., 2012). It has asymptotically a 100 % efficiencyof the least 

squares under Gaussian errors.Itsrelative efficiency was declared to be high based on 

numerical simulations (Víšek, 2011), compared to maximum likelihood estimatorsunder 

various distributional models. Extensions of the idea of implicit weights assigned to 

individual observations to other models (e.g. robust correlation coefficient or robust principal 

component analysis) turn out to yield promising results (Kalina, 2012).  

The nonlinear least weighted squares (NLWS) regression estimator is based on implicit 

weights assigned to individual observations. The arguments for the high robustness of the 

LWS estimator with respect to the presence of outliers and to heteroscedasticity are valid also 

for the NLWS estimator.  

Now, we will propose a general algorithm for an efficient computation of the LWS for both 

linear and nonlinear regression models. The aim is the estimation of the parameter 

,ଵߚ) … , ,ଵݑ) ௣)். We denote residuals byߚ … ,  ௡)். For a given estimate b of β, the residualݑ

corresponding to the i-th observation will be denoted as ݑ௜(ܾ). The loss function for a known 

value of b is the value of ∑ (௜)ݑ௜ݓ
ଶ (ܾ).௡

௜ୀଵ  
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Algorithm 1 (Least weighted squares estimator for a linear or nonlinear regression). 

1. Set the value of a loss function to +∞. Select randomly p points, which uniquely 

determine the estimate b of regression parameters β. 

2. For each observation, compute the residual and assign a weight to it based on  

(ଵ)ݑ
ଶ (ܾ)  ≤ (ଶ)ݑ 

ଶ (ܾ) ≤  …  ≤ (௡)ݑ 
ଶ (ܾ).                                 (9) 

3. Compare the value of the loss function computed with the resulting weights with the 

current value of the loss function.Ifthe loss function is larger, go to step 4. Otherwise 

go to step 5. 

4. Set the value of the loss function to the loss function and store the values of the 

weights. Find the estimator of ߚଵ, … ,  ௣ by weighted least using these weights. Goߚ

back to steps 2 and 3.  

5. Perform steps 1 through 4 repeatedly c-times, where ܿ is a given constant. The output 

(optimal) weights are those giving the global optimum of the loss function over all 

repetitions of steps 1 through 4. 

 

       The weighted estimator in Step 4 is a classical weighted least estimator, either in linear or 

nonlinear case. A suitable choice of c has not been investigated even for the linear regression. 

Two illustrative examples on real data will follow. In Section 3.2, a suitable choice of c is 

investigated for the LWS estimator. In Section 3.3, computational aspects of the NLWS using 

Algorithm 1 are studied. 

 

3.2 Example: Investment data 

Our aim is to investigate the optimal number of iterations in Step 5 of Algorithm 1. We work 

with ݊ = 22 values of real gross domestic product (GDP) and real gross private domestic 

investment (INVEST) in the United States in the years from 1980 to 2001. Both variables are 

expressed in 10ଽ of USD. The data are copied from the website  www.stls.frb.org/fred, 

whilethey originally come from the U.S.Department of Commerce. We use a linear regression 

model, where the response INVEST is explained by the regressor GDP. 

       Table 3 presents estimates of the least squares (LS) and LWS for the linear regression 

model, together with values of ∑ (௜)ݑ௜ݓ
ଶ (ܾ),௡

௜ୀଵ which is the loss function of the LWS 

estimator. The data do not contain any severe outliers.  

 

http://www.stls.frb.org/fred,
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Fig. 1: A study of computational aspects of the NLWS estimator. The loss function 
evaluated in particular 1000 iterations of Algorithm 1 in the example of Section 3.2. 
 

 
Source: own computation 

 

Fig. 2: A study of computational aspects of the LWS estimator on the example of 
Section 3.2. The number of iterations needed to reach the optimal loss out of the total 
number of 1000 performed iterations. 
 

 

Source: own computation 
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Tab. 3: Results of the example of Section 3.2. Estimates of parameters in a linear 
regression model for the Investment data, which are computed with the least squares 
and the LWS estimator with linearly decreasing weights. 
 Least squares LWS estimator 

Intercept -582.0 -465.4 

Slope 0.239 0.221 

෍ (௜)ݑ௜ݓ
ଶ (ܾ).

௡

௜ୀଵ
 4219.9 3910.3 

Source: own computation 

Tab. 4:Results of the example of Section 3.3. Estimates of parameters in a nonlinear 
regression model by the least squares (LS) and NLWS with linearly decreasing weights. 
 Raw data Contaminated data 

Least squares  Intercept 190.8 193.9 

Least sqaures  Slope 0.060 0.067 

NLWS Intercept 191.4 191.6 

NLWS Slope 0.061 0.061 

Source: own computation 

       Let us now search for a suitable value of c for obtaining the the minimal value of the loss 

function, which equals in our example 3910.3. Figure 1 shows thenumber of iterations needed 

to reach the optimal loss out of the total number of 1000 independently performed iterations. 

Thus, the choice ܿ = 1 000 seems to be very safe in order to find the minimum of the loss 

function. This will be further verified in a more sophisticated study. 

      We investigate the number of iterations (i.e. repetitions of Steps 1-4) needed to reach 

precisely the value of the optimal loss. We repeated 1000 times the computation of 1000 

iterations of Algorithm 1 with a random selection of p points in Step 1. Each time, we 

evaluated the value of∑ (௜)ݑ௜ݓ
ଶ (ܾ)௡

௜ୀଵ , which is shown in  Figure 2. The mean value is 458 

iterations. In the average, it requires to compute 458 iterations to obtain the optimal value of 

the loss function. The number of iterations turns out to be less than 1000 in 87.9 % of cases. 

Indeed, the choice ܿ = 1000 is safe in a large percentage of cases, but only the choice ܿ =

10 000 would ensure reaching the optimum in more than 99 % of cases and remains to be our 

recommended choice. 
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3.3 Example: Puromycin data 

The aim of this example is to reveal the robustness of the NLWS estimator compared to the 

nonlinear least squares. We use a Puromycin data set, available in the package datasets of 

R software. The reaction velocity Y is explained as a response of the substrate concentration X 

in the nonlinear regression model 

௜ܻ = ఉభ௑
ఉమା௑

+ ݁௜ ,    ݅ = 1, … , ݊,                                       (10) 

where the aim is to estimate regression parameters ߚଵand ߚଶ. To reveal the strength of the 

method, we also consider a contaminated data set, obtained by modifying the value of the 

observation in the Puromycin data set. Particularly, the concentration of the first observation 

was modified from 0.02 to 0.05 to become the only outlier in the data set. 

      The results of the least squares and NLWS estimators are shown in Table 4. The 

advantage of the NLWS is revealed on the contaminated data set, where it yields reliable 

values, while the least squares estimator is heavily influenced by the contamination. The 

constant ܿ = 10 000 in Algorithm 1 seems to be very sufficient also in nonlinear regression 

model. 

       To summarize the contribution of Section 3, it proposes a general algorithm for an 

implicitly weighted regression estimator (denoted as NLWS), encompassing both the linear 

and nonlinear framework. The performance of the estimator and mainly the computational 

aspects of the new algorithms are revealed in numerical illustrations. Based on the result of 

the computations, we recommend to choose ܿ = 10 000 for moderate samples sizes for 

Algorithm 1. Besides, the NLWS estimator turns out to perform reliably on a data set 

contaminated by outlying measurements. Such robustness is highly desirable in the analysis of 

real data and brings an argument in favour of the NLWS estimator. 
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