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Abstract 

This work studies the phenomenon of heteroscedasticity and its consequences for various  

methods of linear regression, including the least squares, least weighted squares and 

regression quantiles. We focus on hypothesis tests for these regression methods. The new 

approach consists in deriving asymptotic heteroscedasticity tests for robust regression, which 

are asymptotically equivalent to standard tests computed for the least squares regression. One 

approach to modeling heteroscedasticity assumes a prior knowledge or specific model for the 

variability of random regression errors. Another (and more general) approach does not assume 

a specific form of heteroscedasticity. The paper also describes heteroscedastic regression, 

which is a tool to incorporate heteroscedasticity to the model. This allows us to define the 

heteroscedastic least weighted squares regression. 

 

Key words: robust statistics, linear regression, diagnostics 

 

JEL Code: C14, C12, C21 

___________________________________________________________________________ 

 

 

Introduction 

Homoscedasticity is one of essential assumptions of linear regression not only for the least 

squares estimator of regression parameters, but also for its robust counterparts. The paper 

starts by describing heteroscedasticity as the violation of homoscedasticity and presents its 

negative consequences. Tests of heteroscedasticity are presented in Section 2 for the least 

squares estimator, namely the tests of Goldfeld-Quandt, Breusch-Pagan and White test. The 

new result is the asymptotic version of these tests derived for some robust regression 

estimator: the least weighted squares (Section 3) and regression quantiles (Section 4). The 

solution of estimating parameters in the heteroscedastic model is called heteroscedastic 

regression, which is described again for various regression estimators in Section 5.  

 

1 Linear regression  

In the whole paper we consider the linear regression model 

                                       niexxY iippii ,...,2 ,1, ...110   .                                    (1) 
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The variance of the disturbances 2  is known to be a nuisance parameter. This paper 

however has also the aim to show that 2  is a key parameter also in estimating β. It is crucial 

to estimate 2  reliably in order to obtain a reliable tests of hypotheses about β and also its 

reliable confidence intervals. The homoscedasticity assumption 

                                                    var ie  = 2 ,   i=1,…n,                                                        (2) 

is called homoscedasticity, while its violation is denoted as heteroscedasticity.  

There can be severe negative consequences of heteroscedasticity, especially if the 

equality of variances of the disturbances is violated heavily. Regression parameters β cannot 

be estimated efficiently. Denoting the least squares estimator of β by b, the classical estimator 

of var b is biased. This disqualifies using classical hypothesis tests and confidence intervals 

for β as well as the value of the coefficient of determination 2R . Diagnostic tools checking 

the assumption of equality of variances of the disturbances can be based on residuals 

T

nuuu ),...,( 1 , where  

                                                          u i = Y i - b 0 -b 1 x 1i -...-b p x ip                                                      (3) 

and T  denotes a vector transposition. In Section 2 we describe objective diagnostic tests. 

 This paper is devoted entirely to the linear regression model. While in Kalina (2010) we 

have studied robust statistical methods for the model of multivariate location and scatter, in 

this paper we point out that also robust multivariate methods are sensitive to the assumption 

of homoscedasticity. Therefore we must interpret correctly that the variance of disturbances is 

a nuisance parameter. Particularly in the linear regression it is known that 2 is a nuisance 

parameter in estimating the regression parameters β. This does not mean that 2 is not 

important or that its estimation stands aside during the inference of β. We bring arguments 

that 2  plays a very important role in the statistical inference and influences the estimation 

procedures, which aim only at the regression parameters β. While the regression is based on 

the (very non-robust) sum of squares of residuals, the estimation of 2 is based exactly on the 

same sum of squares. This connects the problem of non-robustness of estimating β and 2 . 

 

2 Heteroscedasticity for least squares 

We describe the classical Goldfeld-Quandt test, Breusch-Pagan test and White test for the 

least squares regression. Each of these tests is designed for a different alternative hypothesis. 

Therefore we do not attempt to summarize the basic context common to all three methods. 

More details on standard heteroscedasticity tests can be found in econometric references 
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(Greene, 2002) or (Judge et al., 1985). We point out that the tests were originally proposed in 

econometric journals, while they are diagnostic tools for a general statistical (not only 

econometric) context. 

Goldfeld-Quandt test (Goldfeld and Quandt, 1965) is easy to be computed and 

interpreted. It tests the null hypothesis 

                                                    0H :  var ie  = 2 ,   i=1,…n,                                             (4)  

against the alternative hypothesis 

                                        :1H  var  e = 2 },,...,{ 1 nkkdiag   i=1,…n,                                   (5) 

which models heteroscedasticity in a particular way. The constants nkk ,...,1  must be selected 

by the statistician already before the computation. In fact the test does not depend on these 

values, but its power depends on them. The alternative hypothesis expresses that the variance 

of the disturbances depends on some variable (or a combination of variables) in a monotone 

way. Typically one of the regressors in the linear regression model or fitted values of the 

response are selected to explain the variability of the disturbances in this way. The test is 

based od dividing the data to three groups according the values of the constants nkk ,...,1 . Let 

1SSE  denote the residual sum of squares in the first group of the data and let 3SSE  denote the 

residual sum of squares computed in the third group. Let 1r  denote the number of 

observations in the first group, 3r  in the third group and p is the number of regression 

parameters in the linear regression model. The test statistic  

                                                             
pr

pr

SSE

SSE
F






3

1

3

1                                                         (6) 

follows Fisher’s F-distribution with pr 3  and pr 1  degrees of freedom. 

Breusch-Pagan test (Breusch and Pagan, 1979) requires to specify the alternative 

hypothesis of heteroscedasticity in the form 

                                       ,...var 110 KiKii ZZe     i=1,…,n,                                    (7) 

for some variables  

                                         .),...,(,...,),...,( 11111

T

KnKK

T

n ZZZZZZ                                     (8) 

Often one or more regressors in the original linear regression model are selected as these 

auxiliary variables. The null hypothesis corresponds to 

                                                    0...: 210  KH  ,                                                (9) 
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which is tested against a general alternative hypothesis that the null hypothesis is not true. 

Breusch and Pagan (1979) derived the test statistic in the form of a so-called score test, which 

is one of general asymptotic tests based on the likelihood function, in our case under the 

presence of nuisance parameters. This tests assumes normal distribution of the disturbances e. 

Víšek (2001) proposed a general test which is known as White test. The test exploits 

White’s proposal of an estimator of the variance matrix var e, which is consistent also under 

heteroscedasticity. The test is based on comparing two estimators of the variance matrix, 

where the classical estimator is consistent only under homoscedasticity, while the White’s 

estimator is consistent also under the alternative hypothesis. Therefore large values of the test 

statistic speak in favour of the alternative hypothesis.  

We would like to point out that White test is a special case of Breusch-Pagan test. Here 

the particular choice of auxiliary variables KZZ ,...,1 is performed to contain squares of all 

regressors in the original model and also products of pairs of regressors in the form ji XX  for 

ji  .  

The least squares estimator is known to be too vulnerable with respect to violation of the 

assumption of the normal distribution of the disturbances e. Therefore robust statistical 

methods are studied (see Jurečková and Sen, 1996), which represent a diagnostic tool for the 

least squares estimator or they can be used as an independent tool for the statistical modeling. 

One of efficient estimator is the least weighted squares proposed by Víšek (2004), which will 

now presented. 

 

3 Heteroscedasticity for least weighted squares 

We recall the definition of the least weighted squares (LWS) regression estimator and 

describe asymptotic heteroscedasticity tests, which can be used as diagnostic tools for the 

LWS regression. The tests are based on the test statistics of the Goldfeld-Quandt, Breusch-

Pagan or White test computed for residuals of the least weighted squares.  

The least weighted squares (LWS) regression is a robust regression method with a high 

breakdown point proposed by Víšek (2004). There must be nonnegative weights 1w , w 2 , ..., 

w n  specified before the computation of the estimator. While the classical weighted regression 

assigns a fixed and known weight to each observation, in the context of least weighted 

squares only the magnitudes of the weights are known a priori. These are assigned to the data 

after a permutation, which is determined automatically only during the computation based on 
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the residuals. It is reasonable to choose such weights so that the sequence 1w , w 2 ,...,w n is 

decreasing (non-increasing), so that the most reliable observations obtain the largest weights, 

while outliers with large values of the residuals get small (or zero) weights.  

Let us denote the i
th

 order value among the squared residuals for a particular value of the 

estimate b of the parameter β by ) (b2

iu . The least weighted squares estimator b LWS   for the 

model (1) is defined as 

                                                      b LWS 



h

i

ii buw
1

2

)( )(argmin .                                               (10) 

Kalina (2007) proposed an approximative algorithm for the intensive computation of the LWS 

estimator and described diagnostic tests for the estimator, which are equivalent with those 

computed for the least squares regression. 

The least weighted squares estimator has interesting applications, which follow from its 

robustness and at the same time efficiency  for normal data. Theoretical properties including 

the breakdown point of the estimator are studied by Víšek (2004). It is especially suitable to 

use the LWS estimator rather than other robust regression estimators, because diagnostic tools 

(such as tests of heteroscedasticity and autocorrelation of the errors e) can be computed 

directly using the weighted residuals and again are not affected by outliers. Another 

advantage of the estimator is that no detection of outliers is actually needed to compute it, 

because outlying data are downweighted automatically. Víšek (2010) conjectures that the 

LWS estimator is a reasonable compromise between the least squares and least trimmed 

squares, namely the estimator combines the efficiency of the least squares with the robustness 

of the least trimmed squares. 

We give an overview of recent results on heteroscedasticity tests for robust regression. 

Kalina (2009) proposed the asymptotic Goldfeld-Quandt test and the asymptotic Breusch-

Pagan test for the least weighted squares estimator. Plát (2004) described the White test for 

the least weighted squares regression; the paper studies the test statistic of White test 

computed with the LWS residuals and derives the asymptotic properties of the statistic under 

the null hypothesis of homoscedasticity. Víšek (2010) derives a more general result of 

White’s estimator of var e, which is based on the LWS estimation and is consistent under 

heteroscedasticity. This allows to define directly a test statistic of White (1980), which is 

tailor-made for the context of the LWS regression. Now we use these existing results and the 

ideas of proofs to derive asymptotic heteroscedasticity tests for regression quantiles. 
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4 Heteroscedasticity for regression quantiles 

Regression quantiles represent a natural generalization of sample quantiles to the linear 

regression model. Their theory is studied by Koenker (2005) and their asymptotic 

representation was derived by Jurečková and Sen (1996). The estimator depends on 

a parameter α in the interval (0,1), which corresponds to dividing the disturbances to α ∙100% 

values below the regression quantile and the remaining (1-α) ∙100% values above the 

regression quantile. Here we describe asymptotic heteroscedasticity tests for regression 

quantiles, which are derived based on their asymptotic representation. The proof of the 

theorems follows from the asymptotic considerations of Kalina (2009). 

 

Theorem. Let the test statistic F of the Goldfeld-Quandt test be computed using residuals of 

the quantile regression estimator with a parameter α. Then F has asymptotically Fisher’s F-

distribution with pr 3  and pr 1  degrees of freedom under the null hypothesis of 

homoscedasticity and assuming normal distribution of disturbances in the linear regression 

model.  

 

Theorem. Let the regression quantile estimator with parameter α be computed in the linear 

regression model. Let the test statistic of Breusch-Pagan test 2  be computed as one half of 

regression sum of squares in the model 

                                ,...1102

2

iKiKi

i vZZ
s

u
     i=1,…,n,                                       (11) 

where T

nuuu ),...,( 1  is the vector of residuals of the regression quantile estimator and 2s is 

the estimator of 2 .  Then the test statistic 2  is asymptotically 2

K  distributed assuming the 

null hypothesis of homoscedasticity and normal distribution of disturbances in the linear 

regression model. 

 

5 Heteroscedastic least weighted squares regression 

If  the null hypothesis of equality of variances in the model (1) is rejected by one of the tests 

of Section 2 (for least squares), Section 3 (for least weighted squares) or Section 4 (for 

regression quantiles), we recommend to transform the model (1) to another model in order to 

suppress the negative consequences of heteroscedasticity. The estimation of regression 
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parameters in the transformed model is called heteroscedastic regression. We discuss the 

procedure on the example of the LWS regression. 

Assumptions or a prior knowledge on the form of heteroscedasticity should be 

incorporated  within the process of removal heteroscedasticity. This is the case of the 

Goldfeld-Quandt test in the formula (5). Using the same notation we work with the model  

                                     ,...11

i

i

i

pip

i

i

i

i

k

e

k

X

k

X

k

Y



   i=1,...,n.                                  (12) 

One of typical examples is the choice jii Xk   for a certain  j and for i=1,...,n, where the 

variance of the errors is modeled to be directly proportional to the j-th regressor. Other 

examples include jii Xk  or ,11 ...ˆ
pipiii XbXbYk  where i=1,...,n. In the 

model (12) we estimate the regression parameters by the least weighted squares method and 

heteroscedasiticy should be tested again. If the null hypothesis of homoscedasticity is not 

rejected this time, then the model (12) is considered to be preferable to the model (1). 

Therefore we consider only the results of the transformed model (12) including not only the 

point estimates of β, but also confidence intervals and hypothesis tests of β based on the 

asymptotic distribution of the LWS estimator, the value of the robust coefficient of 

determination and other statistics. 

However sometimes the variability of the disturbances is modeled in a more 

complicated way, just like in formula (7) in the Breusch-Pagan test. Then we describe 

a possible procedure for the removal of heteroscedasticity in two stages. In the first stage the 

regression parameters in the model (1) are estimated by the least weighted squares method 

and squares of the LWS residuals 2

iu  are computed. Then the regression parameters in the 

auxiliary regression model 

                                     ,110

2 ... iKiKii vZZu      i=1,...,n,                                  (13) 

are estimated by the LWS estimator, where nvv ,...,1 are random disturbances. Thus we obtain 

estimates 0̂ , 1̂ ,..., K̂ for regression parameters 0 , 1 ,..., K . In the second stage the fitted 

values of 2

iu , which are computed as 

                                       ,110

2 ˆ...ˆˆˆ
KiKii ZZu     i=1,...,n,                                          (14) 

are used as the constants nkk ,...,1  for the transformed model (12), in which the estimators are 

computed using the LWS estimation procedure. 
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White test is often understood as a general method, which does not contain any 

recommendation about a possible removal of the heteroscedasticity (Greene, 2002). However 

since it is a special case of the Breusch-Pagan test, it also allows the heteroscedastic 

regression to be used in the same spirit. Therefore if the White test as a diagnostic tool for the 

LWS regression gives a significant result, the heteroscedastic regression (13)-(14) should be 

applied and the squares of all regressors and products of pairs of regressors (Section 2) are 

a natural choice for the auxiliary variables for the regression model (13), in which the LWS 

regressio can be used to estimate the regression parameters. 

 

Conclusion 

This work studies the phenomenon of heteroscedasticity in robust regression. Assuming the 

standard linear regression model, the consequences of heteroscedasticity for robust regression 

are described and asymptotic heteroscedasticity tests for the least weighted squares regression 

and for regression quantiles are derived.  

We also describe two possible ways of removing heteroscedasticity from the linear 

regression model. Both are based on a transformation of the original model and take into 

account such variables, which could possibly explain the variability of the disturbances. In 

other words this approach models the heteroscedasticity in a particular way. In practice such 

modeling is based on prior assumptions or knowledge. There exists no heteroscedasticity test 

optimal uniformly over all situations, but rather different tests have different properties. 

Therefore it is not possible to select the optimal heteroscedasticity test for a given data set. 

Another possibility is to use a robust regression estimator consistent also under the 

assumption of heteroscedastic disturbances (Víšek, 2010). Nevertheless our approaches may 

be more appropriate for high-dimensional data. 
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