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SOME FUNCTIONS IN ECONOMY
FROM MATHEMATICAL POINT OF VIEW

(Application of Cartan's moving frame method.)

Milo§ Kanka, Eva Kankova

Abstract
The aim of this article is to give basic geometrical characteristic of some utility functions used

in economics. We are going to study these functions as regular surfaces in R®. Applying the

method of Cartan moving frame we obtain geometrical description of production function
f(u,v)=A-u*-v”,where A=1 a=1lora=2 f=1,
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Introduction

Let us suppose that for every point peM c R® exist an open set U — R?, an open set
V cR® peV, and a homeomorphism x:U -V AM . A subset M — R® is called a two-
dimensional surface in R®. Let x(U) =V "M < R® be a neighbourhood of pe M such that
the restriction x|U is an embedding into x(U)=V nM and that it is possible to choose in
X(U) an orthonormal moving frame {E,,E,, E,} in such a way that E,, E, are tangent to

X(U) and E, is a non-vanishing normal to x(U) . We first discuss the Cartan structural equa-

tions for a two-dimensional surface in R®.

1. Basic equations

Differentiating a map x(u,v) we obtain

248



International Days of Statistics and Economics, Prague, September 22-23, 2011
dx =x, du+x, dv,
where X, , X, are tangent vector fields. Let us denote

X, X X,

n(u,V):m

the unit normal vector field. With respect to the orthonormal moving frame {E,,E,,E,} we

have

dx=E6, +E,0, + E,6,.
where 6. (Ej):5ij. Since X, and x, are tangent to x(U) we have dx-E; =0 which implies

6, =0 and
dx=Ef, + E,6,.
Each vector E, :U c R® — R? is a differentiable map and the differential
dE, :R®* - R®
is a linear map. So we may write (using Einstein's notation)
dE; = o;E;,

where o, are linear forms on R® and since E; are differentiable ; are nine differentiable

forms. So we have

dE, = w,E, + w,E, + o,E,
dE, = 0, E, + 0y,E, + @,5E, (1)

dE; = 0, + @3,E, + oy F,
Differentiating equation E; - E; = 6; we obtain

dEE; + BidE; = w; + w;; =0.

Forms w; are antisymmetric
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w; =0 Wy = —W;; (2)
From (1) and (2) we have
dE, = w,E, +w;E;,
dE, =-a,,E, + w5k, 3)

dE; = —w;E, —wy5E,.

Formsdx and dE, have vanishing exterior derivatives
0=d’x=dE, A6, +E,d0, +dE, A O, + E,d6,. (4)
Substituting (3) into (4) we obtain
(0,E, + @ E,) A6, + E,d6, +(@,,E, + ®,,E,) A 0, + E,d6, =0 (5)
From (5) there immediately follows
(A6, + @, A 6,)E, +(d6, + @y, A O )E, + (@5 A O, + @y5 A 6,)E, =0. (6)

The linear independence of vectors E,, E,, E, and equation (6) gives the following equa-

tions:
d6, =w, A 6,, (7
d6, = w,, A O, (8)
0= ANO, + @y NO,. 9)

Differentiating (3) gives:
0=d’E, =dw,,E, —w,, AdE, +dw,,E, — @5 A dE,,
do,E, -0, /\(a)ZIEl +a)23E3)+da)13E3 — @3 /\(a)SlEl +C’)e,zEz):O' (10)

(da)lz — W3 A a)sz)Ez + (da)13 — W, A a)zs)Es =0.

From (10) we have
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day, =, Aoy, (11)
dw; = o, Ao, (12)
Analogically:
d’E, =dw,,E, —w,, AdE, + d®,,E; — @, AE, =0.
doy, B, — @) A (a’lez + w13E3)+ d@yEy — @5 A (a)31El + a’azEz) =0. (13)

(da)zs — Wy A a)13)E3 + (dw21 — Wy A 0)31)E1 =0
From (13) we have
dw,; = @, A @5 (14)

Equations (7), (8), (9), (11), (12) and (14) are called Maurer-Cartan structural equations. From

equation (9) and Cartan's lemma we have
Op=00+00,0, , @p=04,0,+ a0, (15)

From (15) and (11) we have
Ay, = 03 AWy =—W 3 A )3 = _(a11‘91 +ay,0, ) A (a1201 + a0, ) (16)

Equation (16) gives

2
dw, = —(05110522 — 0512) O, N0, =—KO NG, ,
where K = (0!110!22 — afz) is the Gaussian curvature.

Differentiating the equation E,-E, =1 we obtain dE,-E; =0, which means that dE;is a

tangent vector, i.e. dE; e T,(M). The mapping

G

W =—q—2
(o, + %, )= —a—& = p—

(17)

is a linear mapping W :T,(M)—T,(M).

2. Example 1

Let x(u,v) = (u,v,u-v) be the parametrized utility surface in R®. Orthogonal frame is
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X, =@0ov), x,=(021u), n=(-v,—u,l).
Orthonormal frame is

1

V1+v?2

E, = (,0,v),

1
’ J14v2 Al4u? +v2

E3=—4444£4447(—v,—u,1)

Vi+u? +v?

E (~uv,14v2,u)

The differential form dx = x,du+ x,dv gives
6, =Edx=Ex,du+Ex,dv, for i=12.

We have

0 =1+ vidu+—— dv,
' V1+v2

V1+u? +v?

0, =" "% qv.

V14?2

Further we have

v

dEl = 3 0 y 3 dV,
(1+ v2)5 (1+ v2)5
u
R IO VI
Analogically we have
o, = dE, -E, = ! dv.

- V1+V2 N1+ u? +v2

And further
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1 2
0, =———(-v,-u, 1), (20)
(1+ u? +v2)5

av E2 = 1 3 (E;v ’ E22v ’ Egv )’

v L ut v2)

(21)

where
EL = —u(t+v?) [L+u?)+uv?(1+u? +v?),
E2 =u’v(l+v?),
ES, = —uv|(t+u? +v2 )+ [L+v2)].

From (20) and (21) follows

V1+v? —uv

0,E, E,=——1Y _  5E,-E,-=

2 2 v —2 3 y
1+u”+v \/1+v2(1+u2+v2)

and

V1+v?2 uv

@,, =0E, -E; = du— dv.

1+u® +v? \/l+v2(1+u2+v2)

Summarizing the previous results, we have

o — 3 udv
o =~ Wy = 5 —
1+veN1+u“ +v
o = dv
13 = " W31 = '
V14V 14U V2
V1+V2 uv
0,3 = —s, du - dv,

1wV \/1+v2(1+u2+v2)
0. =J1+vidu+——v dv,
' V1+V2

V1+u? +v?

0,=""— " dv.

V1+4V2

From equations (20) and (21) follows
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u

= du A dv.
V1+v21+u? +v2

dg, =0 , do,
And

0, AB, =N1+u® +v2du Adv. (22)

From (11) we have

1
dw, = w3 AWy, =—————duadv.

(L+u?+v2)e
Thanks to (22) we have

1
dundv=——=6, A6
Nruiev?
and
dw, = 1 6, N6
§ (1+u2+v2)2 ' § (23)
From (23) immediately follows that
1
Ks-r—F— (24)

(L+u? +v2f

which means that every point of studied surface is hyperbolical. The equation (17) gives

W(x,)=—0,E, and W(x,)=-0,E,,

where
0,E; :%(uv, —-vZi-1, —u) , 0,E; = ;3(1—&, uv, —v)
(L+u? +v2 ) (L+u+v? )2
From the fact W :T (M)—T,(M) follows
OBy =a X, +aX, OBy =X + X, . (25)

After a short calculation we obtain
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uv 1+v?
Oy = 3 a12=_—§'
(L+u?+v? ) (L+u?+v2)
1+u? uv
Cn=""7" 3 %27 3
(1+u2+v2)2 (1+u2+v2)2

From equations (25) follows that the mapping W can be described by the matrix

—uv  1+V?
w1 o)
1+u —uv

(1+u2+v2)2

Determinant

det W =K =

—adet( —uv2 1+v2J_ ;2 |
(1+u2+v2) 1+u® —uv (1+u2+v2)

as was given in (24) and the formula for mean curvature

3. Example 2

Let x(u,v) = (u,v,u®v) be a parameterized utility function. Orthogonal frame is

X, =@ 0, 2uv)

x,=(0, 1 u®)

n=(-2uv, —u?, 1.
Orthonormal frame is

1

E=—— (10, 2uw),
V1+4u?v?
1
E. = (—2u®v,1+4u?v?, u?),
t stV 1+ autv? 4ot
E,= L (—2uv, —u?, 1).

v1+4u®v? +u*

The forms 6, and 6, have the form
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3 [ 2,,2 4
491=\/1+4u2v2du+L 1+auv +u

dv, 9, = dv. (27)
Vi+aunv? 0 1+ 4udV?

Further we have

dE, =6,E,du+0,Edv= [(—4uv?, 0, 2v)du+(—4u’v, 0, 2u) dv].

(1+4u?v?)¥?

After a short calculation we obtain

o, =dE, -E, = ! (2u®v du + 2u® dv).
12 12 2,2y [ 202 , 4
(@+4uvo)V1+4u“v® +u
Analogically
1
w,=dE, -E, (2vdu + 2u dv).

VL dutvi V1t autvE 4t
From (26) follows
dE, = (6,E;)du+(0,E;)dv.

After a short calculation we obtain

1

V1+4uv? (1+4u®v? +u?)

dw,, =dE, -E, = [(—4u®v? —2u) du + 4u‘v dv].

Summarizing the previous results we obtain

@, = —0,, = L (2u2v du +2u® dv),
(1+ 4uv? N1+ 4u?v? +u’
1
Wy =~y = (2vdu +2u dv),
? P VLt o
Wy = —Wy, = 1 [(4uv? + 2u)du — 4u*v dv].

V1+4u®v? (1+ 4u?v? +u4)
From equations (16) and (27) we obtain

4u’® 4u?
dw, =0, A0, = sduAdv= N

(1+4u2v2+u4)5 (1+4U2V2+U4)2
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4u’®

from which follows: Gaussian curvature has the form K =— 5
(1+ 4u?v? +u4)

Conclusion

Two economical examples served as an illustration of Maurer-Cartan equations and we

reached the following results:

1. The Gaussian and mean curvatures of the first surface are

1 1 uv
Keero> H=-TrW=-—— "
(1+U2+V2)2 2" (1+u2+vz)g

4u?®

2. The Gaussian curvature of the second surface is K = —

(L+4unv? +u'f
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