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THE USE OF FINITE MIXTURES OF LOGNORMAL 

DISTRIBUTIONS IN THE MODELLING OF INCOMES OF 

THE CZECH HOUSEHOLDS 

Ivana Malá 

 

Abstract 

Finite mixtures of probability distributions may be successfully used in the modelling of 

probability distributions of incomes. These distributions are typically heavy tailed and 

positively skewed. In the text a net annual incomes per capita of the Czech households in 

2004 and 2008 are analysed. The finite mixtures of lognormal distributions are fitted into data 

from the survey Results of the Living Conditions Survey (a national module of the European 

Union Statistics on Income and Living Conditions (EU-SILC)) that has been held by the 

Czech Statistical Office since 2005. Firstly, the components with known group membership 

are formed according to the education of a head of a household (factor with 5 levels) and 

number of children (2 levels factor children yes/no and more detailed 5 levels factor) in the 

household. Secondly, data are divided into groups with unknown group membership in order 

to obtain the best possible fit. In this case 1 to 5 components in the mixture are used. All 

models fitted into data are compared with the use of Akaike criterion.   

Key words:  finite mixture, income distribution, lognormal distribution, maximum likelihood 

estimate, EM algorithm 
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Introduction 

Studying and analyzing incomes and wages is very important not only for experts in the field 

but also for general public. Characteristics of their levels (as values of the mean or median), 

characteristics of variability (standard deviation or coefficient of variation) and Gini index of 

inequality are frequently published and discussed from various points of view. In this article a 

method of mixtures is used for the estimation of distribution of annual income per capita in 

the Czech Republic and characteristics mentioned above are evaluated from these estimated 

distributions and compared with sample ones. Lognormal distribution for components is used 

as it is known to be useful in the modelling of income or wage distributions (an overview of 
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other ´income´ distributions as generalized gamma, beta or lambda distributions, Pareto or 

Weibull distributions in McDonald, 1984). The incomes in the Czech Republic with the use of 

lognormal distribution are analysed in Bartošová & Bína, 2008, Bílková, 2009 or Pavelka, 

2009. The last mentioned article by Pavelka shows the use of mixtures of lognormal 

distributions for wages in the Czech Republic. The unknown parameters are estimated with 

the use of maximum likelihood method. 

In the article data dealing with the Czech households for years 2004 and 2008 are used. 

The set of all households is not homogenous, the households differ in structure (number of 

members, economically active members, pensioners, children etc.) as well as in economic 

activities or education of members. In the text complete data are fitted to incomes for groups 

given by education of a head of a household and according to the existence or number of 

children in the household. Separate distributions can be found for these subgroups defined by 

explanatory variables as above and these distributions are mixed together in the overall 

distribution of the Czech households. Moreover, data are divided into groups with unknown 

group membership for 1 to 5 components.  

1. Methods 

1.1. Finite mixtures of probability distributions 

In this part the finite mixture of probability densities is defined and its properties that are used 

in this article are given (Titterington et al., 1985). Suppose now that K probability densities 

( ; )j jf y θ (j = 1,..,K) depend on p dimensional (in general unknown) vector parameter θj. 

Furthermore, K weights πj fulfil obvious constraints 
1
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The density of the mixture of these probability distributions is defined as a weighted average 

of densities fj  with weights (mixing proportions) πj  in the form
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The mixture density (1) depends on the vector parameter ψ, ),,.,1,,,.,( 11 KjjK    with 

(K−1) parameters πj and Kp parameters theta. If the probability distribution given by the 

formula (1) is used in a model, (K−1) + Kp unknown parameters are to be estimated.

 

It 

follows immediately from (1) that a cumulative distribution function F of the mixture is 
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defined as    ,;;
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 where  jj yF ; is a distribution function of the j-th 

distribution in the mixture.

 

For an expected value of the mixture a formula similar to 

cumulative distribution function can be used and the expected value can be evaluated as a 

weighted average of the expected values of its components with weights πj. These simple 

formulas are not true for higher moments or for values of a quantile function. In the text 

standard deviation of the mixture is frequently used as well as quantiles. If Xj is a random 

variable with density function fj, expected value E(Xj) and finite variance D(Xj), (j = 1,., K), 

variance of Y with probability distribution defined by (1) can be computed as 
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The 100P% quantile yP can be found as a solution of an equation 
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Likelihood function (from a sample yi, i=1,.,n) can be written as 
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Suppose that the random sample arises from the mixture of K subpopulations and for each 

observation yi the subpopulation j is observed together with its value. Data of this type are 

called complete. In this case i-th observation’s contribution to the function L is only  

 jijj yf  ;  (if this observation comes from the j-th subpopulation). The likelihood function 

(4) can be then rewritten in the form (according to Titterington,1985) 
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where zi are known 0/1 vectors with K components and zij is equal to 1 if i-th observation 

comes from the j-th density and 0 otherwise. The vector 
1

n

i

i

 z contains subgroup frequencies 

(number of observations in each subgroup). Taking logarithm in (5) the logarithmic likelihood 

function l can be written in the form 
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The function l in (6) splits into two parts, the first part depends only on mixing proportions 

and the second one only on parameters of probability densities (values zij are known, as we 

suppose that data are complete). Both parts in (6) can be maximized separately. Maximum 



International Days of Statistics and Economics, Prague, September 22-23, 2011 

351 

 

likelihood estimates of proportions are sample relative frequencies of components and 

estimates of parameters of the component densities can be found as maximum likelihood 

estimates in each subgroup.  

If the group membership is not known, the logarithm of  (4) is equal to  
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In this case the logarithmic likelihood function cannot be split into parts as in (6) and the 

function is usually maximized with the use of EM logarithm (Pavelka, 2009). This is a 

numeric procedure that consists of two steps. First step is called Expectation (probabilities πj 

are estimated) and the second one Maximization, where estimated values from the first step 

are used in order to found new approximations of parameters theta. These two steps are 

repeated until a solution is found. Generally, EM algorithm doesn´t guarantee absolute 

maximum of the logarithmic likelihood function but only the local extreme (Titterington et 

al., 1985). 

All estimates in the text are maximum likelihood estimates and in order to compare 

different fits, Akaike criterion was used in the form 

                    AIC=−2*l(ψ) + 2*number of parameters                      (7)
 

If different models are compared, the smaller the value of AIC the better fit. 

 

1.2. Lognormal distribution 

For the modelling of distribution of incomes, the lognormal distribution is frequently used 

with satisfactory results. In this paper two-parametric lognormal distribution is used for 

densities fj. Suppose that a random variable Y with distribution from (1) has a mixture density  
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The vector of parameters ψ has (K−1) + 2K components 
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For the incomplete data, a package flexmix  (Grün & Leisch, 2008) in program R 2.13.1 

was used for the maximization of the logarithmic likelihood function l. The package estimates 

parameters for mixtures of normal distributions (mixing proportions, expected values and 
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standard deviations of normal distributions). This program was used for the logarithms of 

analysed incomes.  

 Furthermore characteristics of the mixture (expected value E(Y), median and standard 

deviation) were evaluated as it was discussed in the part 1.1 with the use of known properties 

of the lognormal distribution. 

 

2. Data and results 

In this part of the article the concept of mixtures of lognormal distributions from previous part 

is used to the modelling of incomes of the Czech households.  Data from EU-SILC (European 

Union – Statistics on Income and Living Conditions) survey from two years 2005 and 2009 

were used. The survey has been held by the Czech Statistical Office yearly since 2005, the 

survey EU-SILC 2005 refers to the incomes from 2004 and EU-SILC 2009 to 2008. The aim 

of the survey is to gather representative data on income distribution for the whole population 

and for various household types. For each household in the sample an annual income per 

capita (in CZK) was evaluated as a ratio of a total of all incomes (net) and a total of members 

of the household. All incomes in the text are in CZK, average rates were 1Euro=31.90 CZK in 

2004 and 24.94 CZK in 2008. Suppose that the income of a household per capita is the 

random variable Y with mixture distribution discussed in the part 1. The survey from 2005 

consists of 4,341 households, in 2008 there were 9,911 households included in the sample. In 

this text the households are divided into subgroups according to education of a head of a 

household (5 levels – the head with primary (or without any education) (B), secondary and 

vocational (without leaving exam) (S), complete secondary (CS), tertiary up to baccalaureate 

(BS), university education with the magister or PhD titles (MS)). In this text only the impact 

of education of the head of the household is analysed without taking into account education of 

other members (especially of the partner of the head of the household). Number of children in 

the household is used as a second explanatory variable. Two models are constructed: one 

model with only two components (households with children and without children) and more 

detailed division with 5 components (number of children 0-3 and more than 3). One can 

expect these groups to be suitable for improving the fit. Data are complete in all these models 

and estimation of unknown parameters was performed with the use of formulas given above.  

Moreover mixtures of one to five components with unknown group membership 

(incomplete data models) were fitted into the sample. In this text the estimated values of 
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unknown parameters are not given. We will concentrate on the quality of fits and the analysis 

of given or estimated subgroups. 

In the Table 1 quality of fits is compared for all 8 models mentioned above. The fit of 

two parametric lognormal distribution into data sets can be seen for incomplete data and K=1. 

This fit is supposed to be really unsatisfactory. In the case of complete data we obtain 

information about the distribution of different groups but as it can be seen in the Table 1 the 

resulting mixture density is not generally better fit to data than the two-parametric lognormal 

distribution. For the division of households according to number of children the resulting fit is 

worst (in comparison by AIC) than two parametric lognormal distribution. The division given 

by the education of a head of a household is for both analysed years better even in comparison 

with subgroups with unknown group membership. In both years the best fit from incomplete 

data was met with the choice K=4. In case of 5 components the numeric procedure took really 

a lot of steps to obtain maximum likelihood estimates of (4+10)=14 unknown parameters and 

it was necessary to pay attention to the choice of initial approximation of the parameters. The 

combination of random group membership (provided by flexmix package) and the 

membership guessed from order values of incomes was used and the numeric procedure was 

performed from more initial guess, the higher number of components K, the greater number of 

fits and iterations and so the longer time to perform the analysis.      

 

Tab. 1: Quality of fits in 2004 and 2008 
 2004 2008  2004 2008 

mixture −l AIC −l AIC mixture −l AIC −l AIC 

children 2 55,169 110,349 133,473 259,606 children 5 56,503 113,033 129,789 260,956 

education  49,727 99,481 115,080 230,186 K=5 52,502 105,032 121,520 243,159 

K=1 52,785 105,575 122,297 244,598 K=2 52,534 105,078 121,630 243,669 

K=3 52,508 105,031 121,526 243,067 K=4 52,502 105,026 121,509 243,040 

Source: own computations 

In the Tables 2-4 the estimated characteristics of the level and variability of subgroups 

are given in order to analyse and compare them. In the Tables 2 and 3 results obtained from 

complete data are given, in the Table 4 these characteristics are shown for incomplete data. In 

the Table 2 we can see that it is worth studying or at least to live in a household with a head 

with high education. All results are in real values of incomes. The inflation rate from 2004 to 

2008 was (CZSO) 1.1413. For example the estimated expected value (year 2004) of income 

per capita for the households with the head with magister education multiplied by inflation 
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gives 181,552 CZK. The real value (Table 2) is 199,691 CZK and it means more than 11 

percent of real increase.   

 

Tab. 2: Estimated characteristics of the level and variability of income distribution. The 

complete data, groups divided according to education 

 Expected value Median 

 B S CS BS MS B S CS BS MS 

2004 89,457 99,113 116,285 131,421 159,075 84,288 91,309 104,611 114,921 139,246 

2008 119,826 130,207 152,848 183,481 199,691 112,308 121,905 139,944 159,692   175,606 

 Standard deviation Coefficient of variation  

2004 31,804 41,844 56,450 72,909 87,862 0.372 0.375 0.439 0.566 0.541 

2008 44,574 48,866 67,134 103,813 108,111 0.391 0.453 0.412 0.452 0.348 

Source: own computations  

 In the Table 3 the negative impact of number of children in the household on incomes 

is obvious. This fact could be reduced in case of the use of equalized incomes (CZSO) instead 

of incomes per capita. 

 

Tab. 3: Estimated characteristics of the level and variability of mixture components 

(CZK) for complete data divided according to number of children 
 Expected value Median 

year no yes 1 2 3 4  no yes 1 2 3  4  

2004 120,625 86,670 97,968 81,195 58,858 56,641 111,748 77,497 87,641 73,865 53,637 53,423 

2008 154,518 118,620 136,123 107,625 89,759 65,064 143,918 107,581 123,995 99,509 81,797 61,451 

 Standard deviation Coefficient of variation 

2004 49,026 43,398 48,940 37,059 26,593 19,952 0.41 0.50 0.50 0.46 0.45 0.35 

2008 60,386 55,098 61,658 44,346 40,554 22,635 0.39 0.46 0.45 0.41 0.45 0.35 

Source: own computations 

Components in the Table 4 are arranged according to estimated values of the 

parameter μj. The expected value of the lognormal distribution depends also on σ
2
 and the 

expected values of components in the table are not always ordered from the lowest to the 

highest. Relative variability (relative to the expected value) is smaller for groups of 

households with low incomes then for high income households with coefficient of variance 

greater than 100 percent, in 2008 for the four components model the standard deviation is 140 

percent of the expected value for the group of the highest incomes per capita.  
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In the Table 5 estimated characteristics of the level and variability of corresponding 

mixture distributions are shown for 6 fits (results are given only for incomplete data with two 

to four components. All the models are fitted into same data and the estimated values in the 

Table 5 can be compared to sample values: sample means 111,024 CZK in 2004 and 145,277 

CZK in 2008, sample medians 97,050 and 126,596 CZK and standard deviations 77,676 in 

2004 and 93,397 CZK in 2008. From the table we can see that expected values evaluated from 

all fits are very similar and characterise well the sample values. The same is true for the 

medians, but it is not the case of standard deviation. Standard deviations of all fits 

underestimate (some of them remarkably) sample standard deviations.  

 

Tab. 4: Estimated characteristics of the level and variability of mixture components 

(CZK) for incomplete data for K=2, 3, 4 

 Expected value Median 

 K=2 K=3 K=2 K=3 

year j=1 j=2 j=1 j=2 j=3 j=1 j=2 j=1 j=2 j=3 

2004 96,967 118,081 95,613 109,866 145,136 95,703 101,114 94,845 99,509 105,979 

2008 128,551 171,787 119,535 146,527 197,689 124,991 143,057 118,302 136,216 140,084 

 K=4 K=4 

 j=1 j=2 j=3 j=4 j=1 j=2 j=3 j=4 

2004 95,100 113,336 110,616 378,488 94,372 95,511 102,950 254,485 

2008 118,064 141,862 157,710 268,866 117,008 134,996 135,944 155,905 

 Standard deviation Coefficient of variation 

 K=2 K=3 K=2 K=3 

year j=1 j=2 j=1 j=2 j=3 j=1 j=2 j=1 j=2 j=3 

2004 15,812 71,218 12,192 51,413 135,797 0.16 0.60 0.13 0.47 0.94 

2008 30,900 114,208 17,303 58,079 196,849 0.24 0.66 0.14 0.40 1.00 

 K=4 K=4 

 j=1 j=2 j=3 j=4 j=1 j=2 j=3 j=4 

2004 11,838 72,400 43,475 416,675 0.12 0.64 0.39 1.10 

2008 15,892 45,818 92,747 377,762 0.13 0.32 0.59 1.41 

Source: own computations 

Tab. 5: Estimated characteristics of the level and variability of income distribution 

(CZK) for the complete data (first part) and incomplete data for K=2, 3, 4 (second part) 

 Education (5 levels) Children (2 levels) Children (5 levels) 

 year E(Y) y0.5 
( )D Y  E(Y) y0.5 

( )D Y  E(Y) y0.5 
( )D Y  
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2004 110,238 97,390 56,671 109,556 100,953 49,873 109,572 97,959 49,971 

2008 144,113 129,487 68,340 143,354 132,969 61,095 143,267 142,091 61,305 

 K=2 K=3 K=4 

2004 110,269 97,463 58,239 110,583 97,101 64,649 111,041 97,143 75,442 

2008 144,808 128,246 77,063 144,834 126,806 83,550 145,263 126,814 94,711 

Source: own computations 

In the Figures 1 and 2 estimated mixture densities are shown for 2004 (Figure 1) and 

2008 (Figure 2).  For both years the estimated density from the fit with incomplete data is 

reasonably closed to sample one even for only 2 components. The fits from complete data are 

similar to the density obtained from single lognormal distribution. 

 

Fig. 1: Estimated mixture densities in 2004 

 

Source: own computations 

Fig. 2: Estimated mixture densities in 2008 

 

Source: own computations 

Conclusions  
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In the paper the use of the mixtures of lognormal distributions is proposed as a suitable model 

for the incomes in the Czech Republic. The expected as well as strange properties of the 

models are described and quantified.    

The concept of mixture distributions is well applicable to income data, as these values 

form usually very non-homogenous set.  If data are divided into subgroups according to a 

known explanatory variable, we have information about subgroups and additionally these 

distributions can be weighted into a distribution for the whole sample. This model doesn´t 

ensure better fit even in case of subgroups with rather different shapes of distributions. This 

fact was quite apparent in the models that took into account number of children in the 

household. 

 In case of incomplete data, the algorithm search for more homogenous groups and the 

fit is improved with every new component. For too many components there are many 

parameters in the model and Akaike criterion increases. Moreover there could be numeric 

problems and the approximation could become time consuming. It is sometimes difficult to 

clearly interpret subgroups in such models. 
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