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NONLINEAR TREND MODELING  

IN THE ANALYSIS OF CATEGORICAL DATA 

Jan Kalina 

_________________________________________________________________ 

Abstract 

This paper studies various approaches to testing trend in the context of categorical data. While 

the linear trend is far more popular in econometric applications, a nonlinear modeling of the 

trend allows a more subtle information extraction from real data, especially if the linearity of 

the trend cannot be expected and verified by hypothesis testing. We exploit the exact 

unconditional approach to propose alternative versions of some trend tests. One of them is the 

test of relaxed trend (Liu, 1998), who proposed a generalization of the classical Cochran-

Armitage test of linear trend. A numerical example on real data reveals the advantages of the 

test of relaxed trend compared to the classical test of linear trend. Further, we propose 

an exact unconditional test also for modeling association between an ordinal response and 

nominal regressor. Further, we propose a robust estimator of parameters in the logistic 

regression model, which is based on implicit weighting of individual observations. We assess 

the breakdown point of the newly proposed robust estimator. 

Key words:  contingency tables, exact unconditional test, log-linear model, logistic 

regression, robust estimation 
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__________________________________________________________________________________ 

 

1 Linear and nonlinear trend modeling 

Analysis of categorical data is a classical field of mathematical statistics, which still obtains 

an attention in recent references. This paper is devoted to modern statistical methods applied 

to the analysis of nonlinear trend in categorical data. Let us consider the  contingency table of 

observed counts in the total number of J groups (Table 1). We assume a multinomial model, 

while the table of probabilities is shown in Table 2. A binary event is observed in objects in 

these random samples. The presence of a certain trait is denoted as success and its absence as 
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failure. The contingency table of observed counts can be described by a product of J binomial 

models. 

Tab. 1: Contingency table of size 2xJ.  

 Group 1 Group 2 ... Group J Sum 

Success 
11n  12n  ... 

Jn1  1n  

Failure 
1n - 11n  2n - 12n  ... 

Jn - Jn1  2n  

 Sum 
1n  2n  ... 

Jn  n 

Source: Agresti (2010) 

 

Tab. 2: Table of probabilities corresponding to the observed counts of Table 1. 

 Group 1 Group 2 ... Group J 

Success 
1  2  ... 

J  

Failure 1- 1  1- 2  ... 1- J  

Sum 1 1 ... 1 

Source: Agresti (2010) 

The analysis of a linear or nonliner trend is an important topic in econometrics and belongs to 

the most crucial tasks in epidemiology and clinical trials (Senn, 2002). A trend test is (any 

possible) test of the null hypothesis of homogeneity in the form  

0H : 1 = 2 =...= J . 

against such alternative hypothesis, which describes (models) the trend in a particular way. 

Testing trend can be used for modeling an ordinal variable in dependence on other (nominal 

or ordinal) categorical variables. In numerous real examples it has been shown that a test of 

trend may have a much larger power than a test against the general alternative 

1H : 0H  is not true. 

The Cochran-Armitage test of linear trend is the most common test of trend in current 

applications. It is a test of 0H  against 2H : j =π + β jx ,  j=1,...,J,  β≠0,  where 1x , 2x ,..., Jx  

are scores corresponding to individual samples of the contingency table. However, the test is 

known to be sensitive to the assumption of linearity of the trend. 

Section 2 of this paper describes the test of relaxed trend and proposes an exact unconditional 

version. Section 3 is devoted to a trend test in modeling an ordinal variable as a response of 
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a nominal variable. Here again an exact unconditional test is proposed. Finally Section 4 

studies a robust trend modeling, which is obtained by robust estimation of parameters in 

logistic regression. 

 

2 Test of relaxed trend 

This section describes an exact unconditional test of relaxed trend for tables 2xJ. This is 

a novel exact unconditional version of the asymptotic test of Liu (1998), which was proposed 

for epidemiological applications. We consider again the null hypothesis 0H , but a more 

general alternative hypothesis than 2H .  

We consider the total number of J independent random samples with fixed sample sizes 1n , 

2n ,..., Jn . We denote n= 1n + 2n +...+ Jn .  

Firstly let us describe the model of relaxed trend (Liu, 1998). For j=1,...,J,  let us use the 

notation jB  for the random event, that a randomly selected object out of the total number of n 

objects belongs to one of groups 1,...,j (j < J). The complement of jB  is the random event that 

the same object belongs to one of the remaining groups j+1,...,J. We introduce the notation 

P(j) and Q(j) for P(j)=P(success| jB ) and Q(j)=P(failures| jB ) . Thus P(j) is the probability of 

success for such object, which belongs to one of the first j groups and Q(j) is the probability 

of success of such object, which does not belong to any of the first j groups. If  Q(j) - P(j) > 0 

holds for a certain j, it means that an object in the first j groups has a smaller probability than 

an object in the remaining groups. 

The null hypothesis 0H  of homogeneity can be expressed as 

0H : Q(j)-P(j)=0  for each j=1,...,J, 

while the alternative hypothesis of relaxed trend is formulated as  

3H : Q(j)-P(j)>0  for each j=1,...,J. 

The model 2H  may be suitable for applications with a nonlinear trend, which would not be 

significant for the test of linear trend. 
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We describe the asymptotic test of 0H  against the alternative of relaxed trend. The condition  

                                               min{ 1U , 2U ,..., 1JU }>0                                                         (1) 

gives evidence in favor of 3H , where ( 1U , 2U ,..., T

JU )1 is a score statistic of the test of 

homogeneity. Liu (1998) defined the statistic as 

T= 2 ∙1{min{ 1U , 2U ,..., 1KU }>0}, 

where 2 is the test statistic of the test of Pearson's test of 0H  against 1H  and 1 denotes 

an indicator function. The asymptotic test is conditional on the value of 1n . The asymptotic 

test also requires to estimate the probability of (1) under 0H , denoted by M . 

The asymptotic test is based on computing Rao's score test (Rao, 2002) of homogeneity. We 

can say that the tedious computations of Liu (1998) were superfluous, because the Rao's score 

test was derived by Day and Byar (1979) to be precisely equal to Pearson's 2 test of 

homogeneity.  

Now we describe the exact unconditional test of relaxed trend. Exact unconditional tests 

studied by Agresti (2001) or Kalina (2011) are suitable for smaller sample sizes, because their 

level is guaranteed not to exceed the nominal level 5 %. We consider all possible contingency 

tables with fixed marginal counts 1n , 2n , 1n , 2n ,..., Jn  in the following form. 

Tab. 3: Contingency table of size 2xJ with fixed marginal counts. 

 Group 1 Group 2 ... Group J Sum 

Success 
1a  2a  ... 

Ja  1n  

Failure 
1n - 1a  2n - 2a  ... 

Jn - Ja  2n  

Sum 
1n  2n  ... 

Jn  n 

  Source: Agresti (2001) 

                            

The p-value is computed as the sum of likelihoods of all such forms of Table 3, which 

fulfil (1) and have the 2 statistic larger or equal to the value of the 2 statistic computed in 

the observed table. The likelihood of each version of Table 3 is evaluated as sum of J 

binomial probabilies under 0H . This however depends on an unknown probability of success 

(across groups). Therefore the value of π is considered, which maximizes the likelihood 
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among all possible values of π, which are covered by the confidence interval for π on a 95 % 

confidence. 

Additionally, we remark that M  can be easily evaluated exactly as the sum of likelihoods of 

all tables (2), which fulfil (1). 

 

3 Examples 

We illustrate the test of relaxed trend with a numerical example. We consider a dose-response 

analysis on laboratory mice. Let us consider three samples with fixed sample sizes. 

A presence of a binary outcome is observed in mice in these samples. A certain chemical is 

added to nourishment for the mice. Group 1 obtains the smallest amount and group 3 obtains 

the largest amount of the chemical. There exists a hypothesis that a larger amount of the 

chemical is associated with the death of the mice, which is the binary outcome of the 

experiment. We compute the test of linear trend (using values of scores 2, 1 and 0) and the 

test of relaxed trend. 

Tab. 4: Observed counts in the dose-response experiment.  

 Group 1 Group 2 Group 3 Sum 

Death 3 4 7 14 

Survival 11 9 2 22 

Sum 14 13 9 40 

Source: own research 

 

Tab. 5: Results of various tests of trend. 

Test Test statistic p-value 

2 test of homogeneity 2 =7.88 p=0.0194 

Test of linear trend 2

T =6.67 p=0.0098 

Test of relaxed trend: asymptotic T= 7.88 p=0.0065 

Test of relaxed trend: exact unconditional - p=0.0061 

Source: own research 
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In this example, the tests of linear trend and relaxed trend give a more significant conclusion 

than the test of homogeneity. The test of linear trend depends on the selection of scores. For 

this reason we consider the test of relaxed trend to be more objective.  The test of relaxed 

trend requires to compute the constant M , which is equal to M = 0.336. 

Further, we perform a simulation study based on a random generation of samples of binomial 

distribution, which together form a contingency table. Thus we randomly generate 5000 tables 

of sizes 2x3 for different situations determined by various values of the probability of success 

under homogeneity (say π) and various values of marginal counts 1n , 2n , 3n . The following 

table summarizes estimated probabilities of rejecting 0H  by the exact unconditional test of 

relaxed trend. The test has a nominal 5 % level. The computations are performed in Matlab 

software. 

Tab. 6: P-values of the exact unconditional test of relaxed trend. 

π 
1n  2n  3n  p-value 

0.2 5 5 5 0.0890 

0.2 10 10 10 0.0738 

0.2 5 10 5 0.0608 

0.5 5 5 5 0.0576 

0.5 10 10 10 0.0506 

0.5 5 10 5 0.0562 

0.8 5 5 5 0.0852 

0.8 10 10 10 0.0730 

0.8 5 10 5 0.0550 

Source: own research 

 

The test has a large computational complexity for larger sample sizes. The results of the 

simulations allow to conclude that the test of relaxed trend holds the probability of type I error 

close to the nominal value (5 %) already for small sample sizes, assuming 1n = 2n = 3n  and 

π=0.5. However, for more extreme values of π, the asymptotic test exceeds the level above 

5 % for small samples. 

 

4 Trend modeling in the analysis of ordinal data 
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This section proposes an exact unconditional test for trend in a contingency table assuming 

an ordinal response with I  outcome values (in rows) in J samples (in columns).  We propose 

a novel exact unconditional version for a log-linear model model, which was described by 

Agresti (2010). 

Tab. 7: Contingency table of size IxJ. 

 Sample 1 Sample 2 ... Sample J 

Outcome 1 
11n  12n  ... 

Jn1  

Outcome 2 
21n  22n  ... 

Jn2  

... ... ... ... ... 

Outcome I 
1In  2In  ... 

IJn  

Source: Agresti (2010) 

 

Each of the observed counts ijn  represents an observation of a random variable ijN , which is 

modeled by Poisson distribution Po( ijm ). We assume a log-linear model 

                            log ijm = u+ 1u (i)+ 2u (j)+ j ( ix - x ),   i=1,...I, j=1,...,J,                           (2) 

where parameters u, 1u (i) and 2u (j) are standard parameters of a log-linear model (fulfilling 

a certain set of parametrization constraints), 1x ,..., Ix  are scores assigned to individual rows of 

the table and 1 ,..., J  are parameters for individual columns of the table.  

Now we describe an exact unconditional test of homogeneity against the alternative 

hypothesis, which is described by (2). The null hypothesis 0H  can be expressed as  

0H : 1 = 2 =...= J . 

The exact unconditional test considers all possible forms of Table 3. The p value is computed 

as the sum of likelihoods of all such tables, which have a larger residual deviance than the 

observed table. Here residual deviance is a test statistic comparing the model (2) with 

a saturated model, which can be computed by software allowing an analysis of generalized 

linear models. In an analogous way as in Section 2, the likelihood of each form of Table 3 

under 0H  is evaluated as sum of J  binomial probabilities, which depend on an unknown 

probability of success π (across groups).  
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5 Robust logistic regression 

The logistic regression is a basic tool for modeling trend of an ordinal variable depending on 

one or several regressors (continuous or categorical). At the same time it is the most common 

method among generalized linear models. The maximum likelihood estimation of parameters 

in the logistic regression is known to be too vulnerable to the presence of outliers.  This 

section proposes a novel robust estimator for parameters of logistic regression. 

Some robust estimation procedures have been proposed as an alternative to the classical 

maximum likelihood method. However, most of them do not possess a high breakdown point, 

which is a measure of sensitivity of estimators against noise or outliers in the data and 

a crucial concept in robust statistics. Christmann (1994) explains outliers in the logistic 

regression mainly by typing errors. Buonaccorsi (2010) warned that outliers appear in real 

data more commonly as measurement errors. There is a connection between robust statistics 

and statistical theory of measurement error models, which has obtained an intensive attention 

in econometrics, which however goes beyond the scope of this paper. We can say briefly that  

practical situations with errors in measurements in both response and regressors require to use 

robust statistical methods, which take the measurement errors into account (Saleh et al., 

2012). Another example of econometric methods for data contaminated by measurement 

errors is the (robust) instrumental variables estimator (Kalina, 2012). 

Christmann (1994) proposed the least median of squares method for estimating parameters in 

the logistic regression model. He proved the estimator to possess the maximal possible 

breakdown point. Nevertheless, the least median of squares is known to possess a very low 

efficiency (Hekimoglu et al., 2009). In this section, we propose a robust estimator of logistic 

regression parameters based on the least weighted squares estimator (Víšek, 2002; Čížek, 

2011; Kalina, 2012) and derive its breakdown point.  

We recall the least weighted squares (LWS) regression, which is a highly robust estimator in 

linear regression  proposed by Víšek (2002). There must be nonnegative weights 1w , w 2 , ..., 

w n  specified before the computation of the estimator. These are assigned to the data after 

a permutation, which is determined automatically only during the computation based on the 

residuals. It is reasonable to choose such weights so that the sequence 1w , w 2 ,...,w n is 
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decreasing (non-increasing), so that the most reliable observations obtain the largest weights, 

while outliers with large values of the residuals get small (or zero) weights.  

Let us denote the i
th

 order value among the squared residuals for a particular value of the 

estimate b of the parameter β by ) (b2

iu . The least weighted squares estimator b LWS   for the 

linear regression model is defined as 

                                                     b LWS 



h

i

ii buw
1

2

)( )(argmin .                                                 (3) 

The least weighted squares estimator combines a high robustness with a high efficiency  for 

normal data. Let us now come to the definition of a robust LWS-based estimator for the 

logistic regressio model. 

We consider a binary variable T

nYY ),...,( 1 , which is explained in a logistic regression by 

regressors .,...,1 nXX  The regressors are p-dimensional variables. The conditional distribution 

of iY  assuming fixed values of the regressors is assumed to be binomial ),( iimBi  , where i  

depends on regression parameters .,...,1 p  We introduce the notation  

,))1(( 2/1

iiii mv    iii XvX 
~

  and  )).1/(log(
~

iiii vY    

We define the least weighted logistic regression (LWLR) estimator as the least weighted 

squares estimator (3) computed for the data TYX )
~

,
~

( 11 ,..., T

nn YX )
~

,
~

( . We recommend to use the 

data-dependent adaptive weights of Čížek (2011), which yield a high breakdown point. This 

allows us to derive the breakdown point of the LWLR estimator. 

Theorem 1. 

Under technical assumptions of Christmann (1994), the breakdown point of the least weighted 

logistic estimator is equal to )1(]2/)1[(  pn , where ][x  denotes the integer part of x. 
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