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ESTIMATION OF PARAMETERS IN FINITE MIXTURES 

FROM CENSORED DATA 

Ivana Malá 

 

Abstract 

In the contribution the problem of estimation of parameters in mixtures of probability 

distributions in case of the presence of right censored data is treated. Only models with known 

number of components and observed component membership (complete models) are studied 

in the text. Possible estimation method of unknown parameters (parameters of components 

and mixing proportions) is described. Specific theoretical and numerical problems associated 

with this this type of the modelling are discussed with respect to the mixture models with 

complete data. A simulation study is presented to illustrate properties of estimates and 

sensitivity of results on the proportion of censored data. For the simulation 10,000 samples 

with 500 and 1,000 observations from the mixtures with two components of normal 

(symmetric distribution) and lognormal (asymmetric distribution) distributions are generated. 

Results are given in the tables and selected histograms of estimates of parameters are shown.  

All computations are made in the package R.  
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Introduction  

The models with censored data are often used in many statistical modelling problems. 

Censored data are met in medical applications, demography, economics, insurance technics 

and a lot of other fields of study. All these applications naturally sometimes treat time-to-

event variables as time to death or time of unemployment. In this case complete data (the time 

of the occurrence of the event of interest is observed) or incomplete data (the event didn´t 

occur by the end of the study) are included in analysed datasets. In this text only complete and 

right censored data (for censored data we have information that the event occurs after 

observed time) are treated. Suppose now, that a based population consists of K subpopulations 

and probability distribution of analysed time to event is described by a known (chosen) 

probability density in each subpopulation. In this problem the probability distribution of time-



The 6
th

 International Days of Statistics and Economics, Prague, September 13-15, 2012 

735 
 

to-event variable can be described with the use of mixture of K distributions in subsets with 

mixing proportions that describes percentage of observations included in given subpopulation. 

The aim of the analysis is then an estimation of unknown parameters. The problem will be 

shortly described in the part 1. Then some results of simulations are shown in the part 2. 

 

1 Methods  

1.1 Finite mixtures of probability distributions 

In this part the finite mixture of probability density is defined and its properties that are used 

in this article are given (Titterington & al., 1985, McLachlan, Peel, 2000). Suppose now, that 

for given K components there are probability densities ( ; )j jf y θ
 
(j = 1,., K) depending on p 

dimensional (in general unknown) vector parameter θj. Furthermore, K weights πj fulfil 

obvious constraints 
1
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The mixture density (1) depends on the vector parameter ψ, 1 1( ,., , , 1,., ),K j j K   ψ θ with 

(K−1) parameters πj and Kp parameters theta. If the probability distribution given by the 

formula (1) is used in a model, (K−1) + Kp unknown parameters are to be estimated. If all 

mixing proportions are supposed to be positive, all K components are present in the mixture. 

The choice of K is crucial for the proper model as well as probability densities fj. 

In this text two-parametric distributions are used as component distributions. For the normal 

distribution (1) is of the form 
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and in the case of lognormal distribution 
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The vector of parameters ψ for both models (2)-(3) has generally 3K−1 unknown parameters. 

For the estimation of unknown parameters (from a sample yi, i =1,.,n) the maximum 

likelihood estimation is used. It means that the likelihood function L(ψ) 
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is maximised. 

Suppose, that the random sample arises from a population divided into K 

subpopulations and for each observation yi the component j is observed together with the 

value (complete data problem). In this case contribution of the i-th observation to the function 

L in (4) is only  ;j j i jf y θ  (if this observation comes from the j-th component). If no 

censored observations are present in the dataset, logarithmic likelihood function l can be 

written as  

 

                                   
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ln( ( )) ln ln ; ,
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l L z z f y
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   ψ ψ θ     (5) 

where zi are known 0/1 vectors with K components and zij is equal to 1 if i-th observation 

comes from the j-th density and 0 otherwise. Both parts in (6) can be maximized separately. 

Maximum likelihood estimates of proportions are sample relative frequencies of components 

and estimates of parameters of the component densities can be found as maximum likelihood 

estimates in each subgroup.  

If the group membership is not observed, the vectors z are random vectors and the 

formula (5) cannot be used. For the estimation so-called EM algorithm is frequently used 

(Titterington & al., 1985, McLachlan, Peel, 2000).  

 

1.2 Right censored data 

We will suppose now, that the analysed dataset includes right censored data. If a complete 

(non-censored) i-th observation comes from the j-th density, it contributes to L as  ;j j i jf y θ  

(as above). If the observation is right censored at time yi (it means that ),i iY y  its 

contribution to (4) is   1 ; .j j i jF y  θ
 
The formula (5) can be rewritten as
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All estimated characteristics of distributions based on maximum likelihood estimates of 

unknown parameters are also maximum likelihood estimates and have all theoretical 

properties of such estimates. For the estimation of all parameters in the part 2 the package 
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Survival in R v. 2.3.1 was used. For the parametric approach to the estimation (described 

above) a function SurvReg was found to be well applicable. With the use of this function so-

called survival distributions as normal, lognormal, Weibull, exponential, logistic and 

loglogistic may be fitted into censored data of different type and moreover explanatory 

variables can be used. In this text known group membership was applied as an explanatory 

variable. If we are interested only in survival function 1-F, the nonparametric Kaplan-Meier 

procedure is applicable (built in the function SurvFit) and it can be used without any 

propositions about distributions (not used in this text that is a part of a wider simulation 

study). 

 The properties of estimates for unknown component membership (obtained by EM 

algorithm) – consistency and asymptotic normality- are given in Svensson, Sjostedt-de Luna, 

2010. In the literature more variations of this algorithm can be found for censored data (for 

example Pilla, Lindsay, 2001). The article Svensson & al., 2006 includes the technical 

application of these methods. The EM algorithm for the fitting of normal distributions 

implemented in R was modified to obtain estimates in this case.   

 

2 Simulation and results  

In order to illustrate estimation of the parameters and their properties a simulation was 

performed. 10,000 samples were generated from the mixtures of two components (with equal 

mixing proportions 1 2 0.5)    from normal (symmetric distribution) and lognormal 

distributions (positively skewed distribution). In all simulations samples of 500 and 1,000 

observations were generated with 10%, 30% and 50% of right censored observations. Note 

that under these assumptions there are 250 (500 observations) in each component. From all 

samples unknown parameters were estimated and then their minimum, mean, maximum and 

standard deviation were evaluated. These values are given in tables. The distribution of 

parameters is well described with the use of histograms. 

 

2.1     Normal distribution 

In the case of two components with the same parameter    1 2 ,     5 parameters in the 

mixture are to be estimated. We will concentrate on three parameters of distributions 

 1 2, ,   (we have 1 2 0.5).  
  In the Figure 1 (left part) the density of the mixture of 

two chosen normal densities
 
 (1,4), (8,4)N N

 
with the mixing proportions 0.5 is given. 
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Suppose now, that parameters   are not equal. In this case a separation of components 

according to (5) is used and the fit is performed separately in each component. In the Figure 1 

(right part) the density of the mixture of two normal densities  (1,4), (8,1)N N  with the 

mixing proportions 0.5 is shown.
 

 

Fig. 1: Normal mixture with two components with equal scale parameters (left) and 

unequal scale parameters (right) 

.   

                                                                                                                                       Source: own computations  

In the Table 1 sample characteristics mean, minimum, maximum evaluated from 10,000 

generated samples are shown for equal standard deviations. For the estimation of   all values 

in the sample were used, for estimates of 
i  only 50 % of them. The shift to the right from 

given values of parameters is obvious. Its value decreases with sample size and the percentage 

of censored data. The sample with a half of observations is heavy-censored but we frequently  

 

Tab. 1: Sample characteristics of estimates: mean (minimum-maximum)  

 n=1,000  10 percent n=1,000  30 percent n=1,000  50 percent 

1̂  1.19 (0.80-1.53) 1.67 (1.35-2.04) 2.36 (2.00-2.72) 

2̂  8.18 (7.84-8.51) 8.67 (8.32-9.00) 9.36 (8.95-9.75) 

̂  2.06 (1.85-2.26) 2.21 (1.99-2.45) 2.43 (2.14-2.71) 

 n=500  10 percent n=500  30 percent n=50050 percent 

1̂  1.66 (1.11-2.17) 1.18 (0.70-1.70) 2.35 (1.84-2.85) 

2̂  8.66 (8.15-9.14) 8.18 (7.69-8.68) 9.35 (8.81-9.87) 

̂  2.21 (1.87-2.56) 2.06 (1.78-2.30) 2.42 (1.99-2.81) 
Source: own computations  
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meet such situation in applications. Sample variances of both estimated parameters are similar 

and approximately 0.05 ( ) and 0.06 ( )i  for sample size 500 and 0.04 for sigma and 0.05 

for estimates of  for sample size 1000. The range is also similar for all selected percentages 

of censored data. In the case of unequal standard deviations a separation of components from 

(5) is used and the fit is performed separately in each component. In the Table 2 

characteristics of estimated parameters based on generated samples are given. In this case 

means are similar for smaller and larger samples. Range of values is greater for small sample 

(and it is true also for standard deviation). 

 

Tab. 2: Sample characteristics of estimates: mean (minimum-maximum)  

 n=1,000  10 percent n=1,000  30 percent n=1,000  50 percent 

1̂  1.19 (0.83-1.52) 1.67 (1.31-2.02) 2.36 (2.02-2.73) 

1̂  2.06 (1.82-2.33) 2.21 (1.93-2.52) 2.43 (2,03-2.81) 

2̂  8.09 (7.92-8.27) 8.35 (8.15 – 8.50) 8.68 (8.46-8.82) 

2̂  1.03 (0.91-1.16) 1.11 (0.96-1.25) 1.21 (1.00-1.39) 

 n=500  10 percent n=500  30 percent n=500  50 percent 

1̂  1.18 (0.72-1.72) 1.67 (1.18-2.12) 2.34 (1.80-2.84) 

1̂  2.05 (1.73-2.44) 2.21 (1.80-2.62) 2.42 (1,84-3.07) 

2̂  8.09 (7.83-8.34) 8.33 (8.09-8.55) 8.68 (8.38-8.92) 

2̂  1.02 (0.84-1.22) 1.10 (0.87 -1.13) 1.21 (0.95-1.52) 
Source: own computations  

 

2.2     Lognormal distribution 

For the lognormal distribution component densities are not well separated (Figure 2) as it was 

for normal distribution (Figure 1). In general, it is more complicated to identify it. This 

problem doesn’t occur if the component membership is known as it is supposed in this text. 

We have again two components with equal mixing proportions. Figure 2 (left part) and Table 

3 refers to the components with equal scale parameters sigma  (1;1), (3;1) .LN LN  Figure 2 

(right part) and Table 4 deals with component probability distributions 

 (1;1), (3;0.64) .LN LN Note now, that in both examples components have unequal variances 

as parameters   are standard deviances of logarithms of Y and variance of the lognormal 

distribution depends not only on   but also on the parameter .  Results were not different 

for this distribution to compare with the normal distribution. In fact both problems mean 
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estimation of parameters in normal distributions – for values Y in the first problem and lnY in 

the second one.  

Fig. 2: Mixture of two lognormal components with equal scale parameters (left) and 

unequal scale parameters (right) 

 

                                                                                                                                   Source: own computations  

In the Tables 3 and 4 shifts to the right are again obvious. The higher the percentage of 

censored data, the more shifted the mean of estimates to the right occurs. Ranges for estimates 

of sigma in the Table 2 are smaller than for estimates of i  (values of i  are estimated 

separately in each component from one half of observations).  

 

Tab. 3: Sample characteristics of parameters: mean (minimum-maximum)  

 n=1,000  10 percent n=1,000  30 percent n=1,000  50 percent 

1̂  1.09 (0.87-1.32) 1.31 (1.13-1.48) 1.63 (1.76-1.81) 

2̂  3.08 (2.89-3.27) 3.30 (3.13-3.44) 3.60 (3.56-3.76) 

̂  0.93 (0.80-1.07) 1.00 (0.90-1.11) 1.10 (0.98-1.23) 

 n=500  10 percent n=500  30 percent n=500  50 percent 

1̂  1.09 (0.92-1.26) 1,31 (1.08-1.56) 1.62 (1.36-1,88) 

2̂  3.08 (2.95-3.21) 3,29 (3.07-3.51) 3.59 (3.38-3.82) 

̂  0.93 (0.86-1.01) 1,00 (0.87-1.16) 1.09 (0.90-1.29) 
Source: own computations  

In the Figures 3-5 histograms of estimates for samples sizes 500 and 30 % of censored 

observations for both equal and unequal values of sigma are shown. In all the figures we can 

see approximately normal distribution of estimates, however all histograms show slightly 
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negatively skewed estimates of parameters. These pictures illustrate central limit theorem and 

asymptotic normality of estimates.  

Tab. 4: Sample characteristics of parameters: mean (minimum-maximum)  

 n=1,000  10 percent n=1,000  30 percent n=1,000  50 percent 

1̂  1.02 (0.89-1.36) 1.43 (0.21-1.64) 1.89 (0.66-2.12) 

1̂  1.34 (1.18-1.50) 1.44 (1.23-1.63) 1.58 (1,32-1.83) 

2̂  3.08 (2.93-3.22) 3.27 (3.12-3.42) 3.54 (3.37-3.71) 

2̂  0.82 (0.72-0.92) 0.89 (0.77-1.00) 0.97 (0.80-1.11) 

 n=500  10 percent n=500  30 percent n=500  50 percent 

1̂  1.12 (0.75-1.45) 1.43 (0.11-1.76) 1.88 (1.52-2.19) 

1̂  1.33 (1.09-1.57) 1.43 (1.15-1.72) 1.57 (1.19-1.99) 

2̂  3.07 (2.86-3.27) 3.27 (3.07-3.46) 3.54 (3.31-3.74) 

2̂  0.82 (0.68-0.98) 0.88 (0.70-1.05) 0.97 (0.76-1.22) 
Source: own computations  

Fig. 3: Distribution of location parameters (Table 3) 
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                                      Source: own computations 

Fig. 4: Distribution of location parameters (Table 4)

 

                                                                                                                                 Source: own computations  

 

Fig. 5: Distribution of scale parameters   (Table 4) 
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                                                                                                                                Source: own computations  

 

Conclusions              

In this text the problem of estimation of parameters of the mixtures with censored data was 

treated. It was shown (with the use of the simulation) that even in the case of large samples 

and known component membership the estimates are shifted to the right (due to right 

censored data). In the figures asymptotic normality of estimates was illustrated. All 

simulations and computations were performed in the program R. This program was 

introduced as the useful tool to be used for such estimation problems.  
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