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Abstract 

The work is devoted to the Durbin-Watson test for robust linear regression methods. First we 

explain consequences of the autocorrelation of residuals on estimating regression parameters. 

We propose an asymptotic version of the Durbin-Watson test for regression quantiles and 

trimmed least squares and derive an asymptotic approximation to the exact null distribution of 

the test statistic, exploiting the asymptotic representation for both regression estimators. 

Further, we consider the least weighted squares estimator, which is a highly robust estimator 

based on the idea to down-weight less reliable observations. We compare various versions of 

the Durbin-Watson test for the least weighted squares estimator. The asymptotic test is 

derived using two versions of the asymptotic representation. Finally, we investigate 

a weighted Durbin-Watson test using the weights determined by the least weighted squares 

estimator. The exact test is described and also an asymptotic approximation to the distribution 

of the weighted statistic under the null hypothesis is obtained. 
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1 Model 

In the whole paper, we consider the linear regression model 

                                �� =  �� +  ����� + ⋯ +  ����� + ��,   � = 1,… ,�,                              (1) 

where ��,… ,�� are values of a continuous response variable and ��,… ,�� are random errors 

(disturbances). The task is to estimate the regression parameters � = (��,��,… ,��)�.  We 

assume the data in the model (1) to be observed in equidistant time intervals. This work 
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discusses the assumption of independence of the errors and its violation. In econometrics, this 

violation is most commonly formulated as the autocorrelation of the errors.  

The violation of the independence of the errors may have severe negative consequences. 

Regression parameters � are not estimated efficiently. Denoting the least squares estimator 

of � by � = (��,��,… ,��)�, the classical estimator of var � is biased. This disqualifies using 

classical hypothesis tests and confidence intervals for � as well as the value of the coefficient 

of determination ��. Diagnostic tools checking the assumption of equality of variances of the 

disturbances can be based on residuals 

                                �� =  �� − �� − ����� − ⋯ − �����,     � = 1,… ,�.                              (2)     

This work is devoted to robust statistical procedures for estimating � in the model (1). Robust 

statistical methods have been developed as an alternative paradigm to data modeling tailor-

made to suppress the effect of outliers. Modern robust methods can be used not only as 

a diagnostic tool for classical methods, but can also fully exploited as reliable self-standing 

procedures. M-estimators are the most widely used robust statistical methods (Jurečková and 

Picek, 2005).  However, M-estimators in linear regression do not possess a high breakdown 

point (only 1/�), which is a statistical measure of sensitivity against noise or outliers in the 

data (Rousseeuw and Leroy, 1987). Highly robust methods are defined as methods with 

a high breakdown point, which has become a crucial concept in robust statistics. Moreover, 

original M-estimators of regression parameters require a simultaneous estimation of the error 

variance, which entails losing computational simplicity. 

 

2 Durbin-Watson test for least squares 

The Durbin-Watson test is a classical test of the null hypothesis of homoscedasticity for the 

least squares estimator in the model (1). Econometricians most commonly consider the test 

against a one-sided alternative of a positive autocorrelation 

                                 ��: �� =  ����� + ��,   0 < � < 1,   � = 2,… ,�,                                    (3)         

where ρ is the autocorrelation coefficient of the first order and ��,… ,�� are independent 

random errors. Based on this notation, the null hypothesis of uncorrelated errors in the 

model (1) can be expressed as ��: � = 0. Especially if |�| is close to 1, the autocorrelation of 

the errors (3) may have severe negative consequences. 
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The test proposed by Durbin and Watson (1950) and later corrected by Durbin and Watson 

(1951) is based on the test statistic  

                                                            � =
∑ (�������)��

���

∑ ��
��

���

 ,                                                        (4)   

which can be expressed as 

                                                               � =
����

���
.                                                                   (5)   

The distribution of d depends not only on p and n, but also on the design matrix X. However, 

lower and upper bounds for critical values have been tabulated. The notation ��(�) and 

��(�)  is used for the lower and upper bound of the test with level �, respectively. The 

decision rule of the test can be described in the following way: 

 Reject ��,  if � < ��(�).   

 Do not reject ��,  if � > ��(�).   

 No conclusion, if ��(�) < � < ��(�).   

The values of ��(�)  and ��(�) have been tabulated; see Kmenta (1986) or other 

econometric textbooks. 

There exist several approximations for the exact p-value for a large number of observations. 

However, every such approximation depends on the design matrix �. Durbin and Watson 

(1951) proposed to transform d to the interval (0,1); let us denote this transformed � by �∗. 

Then the distribution of �∗ can be approximated by a beta distribution. The authors warned 

that this approximation is very rough and can be recommended only if � > 40. In a later 

paper, Durbin and Watson (1971) admitted that their approximation is more accurate that they 

expected and their original caution was excessive. Anyway they recommend first to use tables 

with critical values and only for an inconclusive result to use their approximation.  

There exists also an approximative Durbin-Watson test based on a large-sample normal 

approximation. This test can be used when the number of observations is so large that tables 

of ��(�)  and ��(�)  are not available. The idea is based on properties of the AR(1) process, 

which is an autoregressive process of the first order. The (theoretical) first-order auto-

correlation coefficient in AR(1) model is equal to the coefficient �.  Thus � can be estimated 

by the empirical first-order autocorrelation coefficient 
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                                                              �� =
∑ ������

�
���

∑ ��
��

���

.                                                           (6)  

The test rejects �� if �� >
�

�
. 

The Durbin-Watson test is a general test of misspecification of the model. Although it is 

sensitive to the autocorrelation of the disturbances, it can give a significant result also for 

a model with a missing variable. This can be for example the square of one of the independent 

variables in the model (1). A misspecification of the model can be revealed by a plot of 

residuals (1,��),… ,(�,��), which should be examined carefully before running the Durbin-

Watson test. 

If it is aimed to test �� against negative autocorrelation, the quantity 4 − � is usually used as 

a test statistic and then the decision rule is the same. A test against a two-sided alternative 

��: � ≠ 0 is straightforward to be carried out, but not much used in econometric practice. 

Cochrane and Orcutt (1949) proposed a method for estimating parameters in the model (1), 

which adjusts for the autocorrelation of the errors and can be recommended to be carried out 

if the Durbin-Watson test yields a significant result. 

 

3 Durbin-Watson test for regression quantiles 

Regression quantiles represent a natural generalization of samples quantiles to the linear 

regression model (1). Their theory was studied by Koenker (1995) and their asymptotic 

representation was derived by Jurečková and Sen (1996). The estimator depends on a fixed 

value of the parameter α in the interval (0,1), which corresponds to dividing the disturbances 

to � ∙ 100 % values below the regression quantile and the remaining (1 − �)∙ 100 % values 

above the regression quantile. Here we describe the asymptotic Durbin-Watson test for 

regression quantiles, which is derived from the asymptotic representation. The proof of the 

theorems follows from the asymptotic considerations of Kalina (2007). 

Theorem 1. Let the statistic � of the Durbin-Watson test be computed using the residuals of 

the regression quantile with a parameter �. Then, assuming normal errors �~�(0,����) 

in (1), the statistic � is asymptotically equivalent to  

                                                        ������/����                                                            (7) 
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under ��, where � = �� − �(���)���� and �� is a unit matrix of size ���. 

The test statistic (7) is exactly the Durbin-Watson statistic (5) for the least squares regression. 

 

4 Durbin-Watson test for trimmed least squares  

The trimmed least squares estimator (TLS) is a robust estimator in the linear regression 

model (1) based on regression quantiles. Its asymptotic representation derived by Jurečková 

and Sen (1996) allows to derive an asymptotic Durbin-Watson test for the TLS estimator. 

The estimator depends on two parameters. These are fixed values �� and �� between 0 and 1. 

Let us denote by ��(��) and ��(��) the regression quantiles corresponding to the arguments �� 

and ��. Let us assume 0 < �� <
�

�
< �� < 1. To define the TLS estimator, let us introduce 

weights � = (��,… ,��)�, where �� is equal to 1, if both conditions are fulfilled:  

1. The fitted value of the �-th observation by the quantile regression with argument �� is 

smaller than ��; 

2. The fitted value of the �-th observation by the quantile regression with argument �� is 

larger than ��. 

Let � denote the diagonal matrix with diagonal elements ��,… ,��, where �� is an indicator 

of the random event that the i-th observation lies between the values ��(��) and ��(��). The 

TLS estimator ����(��,��) in the model (1) is defined as 

                                                    ����(��,��) = (����)������.                                          (8) 

The asymptotic representation requires the assumption that the errors ��,… ,�� come from 

a continuous distribution with a density function symmetric around 0. 

Theorem 2. Let the statistic � of the Durbin-Watson test be computed using the residuals of 

the TLS estimator with parameters �� and ��. Then, assuming normal errors �~�(0,����) 

in (1), the statistic � is asymptotically equivalent to (7) under ��. 
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5 Least weighted squares 

A promising highly robust estimator in the linear regression context seems to be the least 

weighted squares estimator (Víšek, 2002). It does not remove outliers, but potential outliers 

are only down-weighted and not trimmed away completely.  

We will now recall the least weighted squares (LWS) estimator. First, the user needs to 

specify a sequence of magnitudes of weights 

                                                     �� ≤ �� ≤ ⋯ ≤ ��,                                                      (9) 

which are assigned to individual observations only after some permutation. Let us denote the 

squared residuals corresponding to a given estimator � of � as 

                                           �(�)
� (�) ≤ �(�)

� (�) ≤ ⋯ ≤ �(�)
� (�).                                          (10)   

The LWS estimator ���� is defined as 

                                                arg min
�∊ℝ���

∑ ���(�)
� (�).�

���                                             (11)  

The computation of the LWS estimator is intensive and an approximative algorithm can be 

obtained as a weighted version of the FAST-LTS algorithm proposed for the least trimmed 

squares (LTS) regression. The latter represents a special case of least weighted squares with 

weights equal to zero or one only and its ability to detect outliers was investigated by 

Hekimoglu et al. (2009). Heteroscedasticity tests for the LWS were studied by Kalina (2011). 

The LWS estimator has a small local sensitivity compared to the LTS, which suffers from 

high sensitivity to small deviations near the center of the data. Properties of the LWS 

estimator were investigated by Víšek (2011) or Kalina (2012). 

 

6 Least weighted squares: asymptotic Durbin-Watson statistic 

We recall the asymptotic Durbin-Watson test for the LWS estimator derived by Kalina 

(2007). Later in Sections 7 and 8, we will derive alternative approaches based on a weighted 

version of the Durbin-Watson test statistic. We use the notation �∗ = � − ����� for the 

residuals of the LWS estimator.  

Remark 1. The test statistic (4) is invariant with respect to ��.  
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We assume independent normal errors  

                                                     ��~�(0,��),   � = 1,… ,�.                                                 (12) 

Under the null hypothesis, the value of �� is arbitrary in the spirit of Remark 1. We will use 

the asymptotic representation of the LWS estimator presented by Víšek (2011) and assume his 

technical Assumptions A. The weights ��,… ,��are assumed to fulfil (9). We introduce the 

notation 

                     �∗ = � −
�

�
�(���)�� ∑ �� ∑ ����� ���� �

���

��
�� +

�

√�
��,�

���
�
���                    (13) 

where coordinates of the remainder term � = (��,… ,��)� are negligible in probability, 

� denotes an indicator, δ is a constant and ��� is the quantile function of the standard normal 

distribution. We introduce the notation � =
�

√�
�� and � = �∗ − �, where � is known up to the 

value of the constant δ, while Kalina (2007) proposed its consistent estimator. 

Theorem 3. Under ��, the test statistic (4) is asymptotically equivalent in probability with 

                                                                      
����

���
                                                                 (14) 

under Assumptions A. 

The proof is analogous with Kalina (2007). 

Theorem 4. The test statistic (4) is asymptotically equivalent in probability with  

                                                           ������/����,                                                        (15) 

where � = � − �(���)����. 

The proof is based on Theorem 3 using analogous steps as Kalina (2007). 

Finally we explain how to compute the p-value or critical value for the asymptotic test, based 

on simulating from the null distribution of the test statistics (14) or (15).  

Theorem 5. The approximative p-values of the Durbin-Watson test for the least weighted 

squares based on (10), or (11) respectively, assuming (12), defined as the probability 

                                                          � �
����

���
>

�∗���∗

�∗��∗
�,                                                         (16) 
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respectively 

                                                         � �
������

����
>

�∗���∗

�∗��∗
�,                                                     (17) 

converge to the p-value of the exact test for the LWS residuals for � → ∞ under 

Assumptions A, where ��,… ,�� are independent random variables with �(0,1) distribution 

and ��,… ,�� are computed using the values ��,… ,��. 

Remark 2. Without loss of generality, the unit variance of the random errors can be considered 

in Theorem 5, because the value of � is scale-invariant, the vectors � is scale-equivariant and 

the expressions (14) and (15) also scale-invariant. 

 

7 Least weighted squares: exact weighted Durbin-Watson test 

We study the null distribution of the weighted Durbin-Watson statistic for the least weighted 

squares conditioning on fixed weights. Let ��,… ,�� denote the resulting weights 

corresponding to individual observations obtained as the output of the LWS estimator, i.e. the 

weight �� is assigned to the i-th observation for � = 1,… ,�. Let � denote the diagonal 

matrix, which contains the weights ��,… ,�� on the main diagonal. The idea of the exact test 

is to express the LWS residuals �∗ = � − ����� in the form �∗ = ���, where the 

matrix �� is defined as 

                                                  �� = � − �(����)�����.                                             (18)  

Theorem 6. The p-value of the Durbin-Watson test for the LWS estimator against the one-

sided alternative of positive autocorrelation based on the weighted Durbin-Watson statistic 

                                      �� =
∑ (�����

∗� ���������
∗ )��

���

∑ ����
∗��

���

=  
�∗���/����/��∗

�∗���∗
                              (19)  

assuming  

                                                                � ~ �(0,�����)                                                   (20) 

is equal to the probability 

                                                       � �
∑ ����

����
���

∑ ����
����

���

 ≤  
�∗���/����/��∗

�∗���∗
�,                                     (21)      
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where ��,… ,���� are independent random variables with �(0,1) distribution, ��,… ,���� are 

positive eigenvalues of ��
� ���, ��,… ,���� are positive eigenvalues of ��

� ��. 

 

8 Least weighted squares: asymptotic weighted Durbin-Watson test 

We use the asymptotic results described in Section 6 to obtain the asymptotic null distribution 

of the weighted Durbin-Watson statistic (19) computed from the LWS residuals. Again we 

use the notation �∗ = � − �����. 

Theorem 7. The approximative p-values of the Durbin-Watson test for the least weighted 

squares, assuming (20) and Assumptions A, defined as the probability 

                                                      � �
��√��√��

����
>

�∗�√��√��∗

�∗���∗
�,                                          (22) 

or using an additional approximation as 

                                                    � �
���√��√���

������
>

�∗�√��√��∗

�∗���∗ �,                                       (23) 

converge for � → ∞ to the p-value of the exact weighted Durbin-Watson test for the LWS 

residuals under, where ��,… ,�� are independent random variables with �(0,1) distribution 

and ��,… ,�� are computed from the values ��,… ,��, using  � = �∗ − � and (13). 
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