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Abstract 

Longitudinal studies have been highly developed in many scientific research areas such as 

economic, biomedical researchs and so on. The longitudinal data are mainly resulted from the 

observations of subjects (human beings, animals, or laboratory samples, etc.), which are 

measured repeatedly over some period of time. 

            The classical analysis of longitudinal studies is based on parametric models including 

marginal models, random effects modals and transition models. Nevertheless, in the recent 

years, functional data analysis provides a nonparametric approach for the analysis of  

longitudinal data which observations of the same subject are viewed as a sample from a 

functional space. In a longitudinal data analysis, one mostly deals with sparsely and 

irregularly observed data that also corrupted with noise. In contrast, classical functional data 

analysis requires a large number of regularly spaced measurements per subject. Adjustments 

of functional data analysis techniques which take these particular features into account are 

needed to use them for longitudinal data. We review some techniques that have been recently 

proposed to connect functional data analysis with longitudinal data such as, functional 

principal components and functional linear regression models. Then performance of these 

methods are illustrated with real data. 

Key words:  Longitudinal data, functional data analysis, functional principal component 

analysis, functional linear models 
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Introduction 

In the last decade, Longitudinal Data Analysis(LDA)  has been widely studied in the fields of 

clinical trials, medicine, social sciences, economy and etc. Longitudinal studies are 

characterized by data records containing repeated measurements per subject, measured at 

various points on a suitable time axis. The aim is often to study change over time or time-
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dynamics of biological phenomena such as growth. One is also interested in relating these 

time-dynamics to certain predictors or responses. Therefore LDA represents a connection 

between regression (cross-sectional) and time series analysis. But longitudinal data have some 

special properties. Unlike the regression analysis, subjects observed over time and unlike the 

time series analysis,  the data consists of many subjects. Another important property of 

longitudinal data is that unlike the classical analysis, all of the observations on the same 

subject tend to be correlated. In such studies, the possible correlations between responses 

given by the same individual need to be taken into account in order to produce proper 

analysis. Various models can be used to handle such correlations. One approach is using 

marginal modeling, which allows for inferences about parameters averaged over the whole 

population(Liang et al., 1992; Molenberghs and Leasaffre, 1994). Another approach is 

making use of random effects modeling, which deliberately provide inferences about 

variability between respondents (Verbeke and Lesaffre, 1996; Diggle et al., 2002). Another 

appropriate approach is to investigate the reasons for the change of the responses is the use of 

transition(Markov) models (Reuter et al., 2004; Chung et al., 2005). 

            The parametric assumptions that are made in these models cause incompatible and 

complex relationships. Introducing nonparametric components can ameliorate the difficulties 

of relating various longitudinal models to each other, as it increases the inherent flexibility of 

the resulting longitudinal models substantially. Taking the idea of modeling with 

nonparametric components one step further, the Functional Data Analysis (FDA) approach to 

LDA provides an alternative nonparametric method for the modeling of individual 

trajectories. 

           FDA provides an inherently nonparametric approach for the analysis of data which 

consist of samples of time courses or random trajectories. It is a relatively young field aiming 

at modeling and data exploration under very flexible model assumptions with no or few 

parametric components. Basic tools of FDA are smoothing, functional rincipal omponents and 

functional linear model(Ramsay and Silverman, 2002). While in the usual FDA paradigm the 

sample functions were considered as continuously observed, in LDA one mostly deals with 

sparsely and irregularly observed data that also are corrupted with noise. Adjustments of FDA 

techniques which take these particular features into account are needed to use them for LDA. 

We review some techniques that have been recently proposed to connect FDA methodology 

with LDA. The extension of FDA towards LDA is a fairly recent undertaking that presents a 

promising method for future researchs(Rice, 2004; Zhao et al., 2004 ; and Muller, 2005).  
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           The paper is organized as follows. In section 1 we shall shortly review the specification 

of three basic models for LDA. Then, we will introduce the connections between FDA with 

LDA in section 2. Next, in section 3 we also illustrate and compare classical and functional 

model for a longitudinal study by an analysis of the dynamic relationship between viral load 

and CD4 cell counts observed in AIDS clinical trials. 

 

1 Review of three basic models for longitudinal data analysis 

In this section, we introduce three model strategies that are commonly used to LDA: marginal 

models, mixed effects models, and transition models. Let us first provide some notation. We 

assume that n subjects are measured repeatedly over time whic , 1, 2, , , 1, 2, ,ij iy i n j t     

is the response variable on thj
 
time order for the thi  subject. Each response

 ijy  is associated 

with a 1p   vector of covariates, ijx , through the period of study that may change over the 

time. For example, it can be the age of subject (time varying covariate) or gender of subject 

(time stationary covariate). Now we introduce marginal, random effects and transition 

models. 

 

1.1 Marginal models 

In marginal model, the relation between  response and explanatory variables is modelled 

separately from within-person correlation. The marginal expectation of the response,

( )ij ijE y  , depends on the covariates, ijx , through a link function g as follows: 

'[ ( | )] ( )ij ij ij ijg E y x g x   .           (1) 

The marginal variance of the response depends on the marginal mean: 

ijVar(y ) =  ( )ij  ,                             (2) 

where ν is a known function and the scale parameter  
 
may also depends on some covariates. 

Also, the correlation between yij and yik is a function of the marginal mean: 

ijCorr(y ,y ) = ( , , )ik ij ik    ,               (3) 

where   is a known function and the correlation parameters   may depend on covariates. In 

this model consistensy and effeciency of estimators depends on choice of correlation 

structure, that is limitation of this model.  
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1.2 Random-effects models  

The basic idea underlying a random-effects model is that there is a natural heterogeneity 

across individuals in their regression coefficients and that the heterogeneity can be handled by 

a probability distribution. Correlation among observations for the same individual arises from 

their sharing unobservable variables, ib . The model can be given by: 

' '[ ( | , )] ( )ij ij i ij ij ij ig E y x b g x z b    ,                              (4) 

where zij is a subset of covariates, ie,
 ijx . Typically, under a random-effects model, the ijy , 

given ib , are conditionally independent over time. Correlation among the responses from the 

same subject arises from their sharing unobservable variables, i.e., random effects. Generally 

the random effects are assumed to be multivariate Gaussian with mean 0  and variance-

covariance matrix D . This assumption is limitation of this model. 

 

1.3 Transition model  

Under a transition model, correlation among the responses of same subjects exists because the 

past response values explicitly influence on the present observation. In this model, the 

response variable at time t  depends on the response at time lags 1, 2, ,t t t q   . 

Correlation between responses is considered by direct effects of q past values on present 

and past values are considered as additional predictive variables(covariates). Let 

1 2 1( , , , )ij i i ijH y y y    denote the history of ijy . The model can be represented as: 

'

1

[ ( | , )] ( ) ( , )
s

ij ij ij ij ij r ij
r

g E y x H g x f H  


                          (5) 

where rf .  is a known function of history. Limitation of this model is that the estimation of 

parameters depends on this function  rf . 

2 Functional linear regression models for longitudinal data 

We propose nonparametric methods for functional linear regression which are designed for 

sparse longitudinal data, where both the predictor and response are functions of a covariate 

such as time. Predictor and response processes have smooth random trajectories, and the data 

consist of a small number of noisy repeated measurements made at irregular times for a 

sample of subjects. In longitudinal studies, the number of repeated measurements per subject 

is often small and may be modeled as a discrete random number and, accordingly, only a 

finite and asymptotically nonincreasing number of measurements are available for each 

subject or experimental unit. We propose a functional regression approach for this situation, 
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using Functional Principal Component Analysis(FPCA), where we estimate the Functional 

Principal Component(FPC) scores through conditional expectations. This allows the 

prediction of an unobserved response trajectory from sparse measurements of a predictor 

trajectory. The resulting technique is flexible and allows for different patterns regarding the 

timing of the measurements obtained for predictor and response trajectories. Asymptotic 

properties for a sample of n  subjects are investigated under mild conditions, as n  , and 

we obtain consistent estimation for the regression function. In addition to convergence results 

for the components of functional linear regression, such as the regression parameter function, 

we construct asymptotic pointwise confidence bands for the predicted trajectories. A 

functional coefficient of determination as a measure of the variance explained by the 

functional regression model is introduced, which extend the standard 2R  to the functional 

case. 

 

2.1 Functional principal components 

 FPCA has emerged as a major tool for dimension reduction within FDA. One goal is to 

summarize the infinite-dimensional random trajectories through a finite number of FPC 

scores. This method does not require distributional assumptions and is merely based on first 

and second order moments. An important application is a representation of individual 

trajectories through an empirical Karhunen-Loeve representation. It is always a good idea to 

check and adjust for smoothing before carrying out an FPCA. 

The underlying but unobservable sample consists of pairs of random trajectories

( , ), 1,2, ,i iX Y i n  , with square integrable predictor trajectories Xi and response 

trajectories iY . These are realizations of smooth random processes ( , )X Y with unknown 

smooth mean functions ( ) ( ), ( ) ( )Y XEY t t EX s s   , and covariance functions 

cov( ( ), ( )) ( , )YY s Y t G s t , cov[ ( ), ( )] ( , )XX s X t G s t . We usually refer to the arguments of 

(.)X  and (.)Y  as time, with finite and closed intervals S  and T  as domains. We assume 

that orthogonal expansions of XG  and YG  (in the 2L sense) are exist in terms of 

eigenfunctions m  and k  with nonincreasing eigenvalues m  and k , that is, 

1 2 1 2 1 2( , ) ( ) ( ), ,X m m mG s s s s s s S     , and 1 2 1 2 1 2( , ) ( ) ( ), ,Y k k kG t t t t t t T     . 

We model the actually observed data which consist of sparse and irregular repeated 

measurements of the predictor and response trajectories iX  and iY , contaminated with 

additional measurement errors. To adequately reflect the irregular and sparse measurements, 
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we assume that ilU  (resp. ijV ) denote the observation of the random trajectory iX  (resp. iY  ) 

contaminated with measurement errors il  (resp. ij ). The errors are assumed to be . . .i i d with 

2 20, [ ]il il XE E     (resp. 2 20, [ ]ij ij YE E     ), and independent of functional principal 

component scores im  (resp. ik ) that satisfy 0, [ , ] 0im im imE E      for m m  , 

2[ ]im mE   (resp. 0, [ , ] 0ik ik ikE E     for k k  , 2[ ]ik kE   ). Then we may represent 

predictor and response measurements as follows: 

1

( ) ( ) ,il i il il X il im m il
m

U X s s    




           sil ∈ �                      (6) 

1

( ) ( ) ,ij i ij ij Y ij ik k ij
k

V Y t t  




                   til ∈ �                     (7) 

           We note that the response and predictor functions do not need to be sampled 

simultaneously, that extend the applicability of the proposed functional regression model. 

 

2.2 Functional linear regression model 

Consider a functional linear regression model in which both the predictor X  and response Y

are smooth random functions, 

[ ( ) | ] ( ) ( , ) ( ) .
S

E Y t X t s t X s ds                                                  (8) 

Here the bivariate regression function β(s, t) is smooth and square integrable, that is, 

2 ( , )
S T

s t dsdt     Centralizing ( )X t  by ( ) ( ) ( )c
XX s X s s  , and observing 

( ) ( ) ( ) ( , ) ( )Y X

S

EY t t t s t s ds       , the functional linear regression model becomes 

[ ( ) | ] ( ) ( , ) ( ) .c
Y S

E Y t X t s t X s ds                                            (9) 

Our aim is to predict an unknown response trajectory based on sparse and noisy observations 

of a new predictor function. An important step is to estimate the regression function ( , )s t . 

We use the following basis representation of ( , )s t , which is a consequence of the 

population least squares property of conditional expectation and the fact that the predictors are 

uncorrelated, 

2
1 1

[ ]
( , ) ( ) ( ).

[ ]
m

m k
m k

k m

E
s t s t

E

 
  



 

 

                                          (10) 
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In the first step, smooth estimates of the mean and covariance functions for the predictor and 

response functions are obtained by scatterplot smoothing; Then a nonparametric FPCA step 

yields estimates ˆ ˆ,m k  ,  for the eigenfunctions, and ˆˆ ,m k  for the eigenvalues of predictor 

and response functions. We use two-dimensional scatterplot smoothing to obtain an estimate 

ˆ ( , )C s t of the cross-covariance surface ( , ), ,C s t s S t T  , 

1 1

( , ) cov( ( ), ( )) [ ] ( ) ( ).m k m k
k m

C s t X s Y t E s t   
 

 

              (11) 

Finally we obtain estimates for [ ]km m kE   ,  

ˆˆ ˆˆ ( ) ( , ) ( )km m ks C s t t dsdt                                                    (12) 

that results an estimate for β(s, t):  

1 1

ˆˆ ˆ ˆ( , ) ( ) ( ).
ˆ

K M
km

m k
k m m

s t s t


  
 

                                                   (10) 

           More details on smooting, asymptotic inference, computation of consistent estimation 

for the regression function, asymptotic pointwise confidence bands for the predicted 

trajectories and the standard 2R  to the functional case are presented in  Staniswslis and 

Lee(1998), He et al.(2000),  Rice and  Silverman(1991), Rice(2004), Zhao et al(2004), and 

Muller(2005).   

 

3 Model  fitting results for viral load and CD4 cell counts data 

Sinse HIV-1 RNA copies (viral load) and CD4 cell counts are important virologic and 

immunologic markers for HIV-1 infection, their dynamic relationship during antiviral 

treatments is of interest. Because the viral load measurement is more difficult to obtain, 

therefore one has only longitudinal CD4 data available, in which case it is of interest to 

predict the associated time course of viral load. The data for the following analysis were 

collected in accordance with AIDS Clinical Trials Group (ACTG). These data are available at 

[12] and have also been studied in Liang et al. (2003) and Wu and Liang (2004). The data 

consist of n = 46 patients with moderately advanced HIV-1 infection, for whom 

measurements of viral load and CD4 cell counts were available for the first 24 weeks of 

treatment. The observed individual trajectories of CD4 cell counts and viral load and 

descriptive statistics of the data are displayed in Fig.1 and Tab.1 respectively. In order to 

compare the results of classical and functional approaches, we first analyse this data by 

marginal models. Then we apply  functional linear regression model for analysis of this data. 
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Fitted viral load trajectories, obtained from both marginal model and functional linear 

regression model for four randomly selected patients that are shown in figure 2. We compute 

the mean of observed prediction errors over all subject for every time point, next we use the 

median  criterion of  this errors over all times and we use this criterion to compare validity of 

both models. This criterion are displyed in table 1.  

 

Fig. 1: Observed individual trajectories of the viral load(left panel) and observed 

individual trajectories of the CD4 cell count(right panel). 

 

Tab. 1:  Descriptive statistics of observed viral load and CD4 cell counts  

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

viral load 1.699 3.832 4.398 4.352    4.954    6.204    

CD4 cell count 17.28 157.18 216.92   215.63   274.77   461.76   

 

Tab. 2:  Median of observed prediction errors over all time points 

method Marginal Functional 

Median  0.5668013 1.084927 
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Fig. 2: Viral load trajectories(solid), fitted viral load trajectories obtained from both 

marginal model(dashed) and functional linear regression model(dashed doted red) for 

four randomly selected patients. 

Conclusion 

The main problem of inference  on longitudinal data is constraint on parametric models with 

limitative assumption such as choice of correlation structure in marginal models, normality 

assuption of random effects in random effects models and choice the form of in transition 

models. These difficulties motivate non-parametric methods for LDA such as FDA method. 

Classical methods for FDA, which traditionlly have been densely sampled random trajectories 

observed without errors, are targeted by a new version of FDA. Extention of irregularly 

measured and noisy trajectories of functional data that is remarkable propertises of  

longitudinal data  have been discussed in this paper. The results of applying this method and 

marginal models to real longitudinal data are presented in Fig.2 and Tab.2.  

           In Tab.2 the median criterion of functional regression is greater than marginal model.  

because in the marginal models we use further assumption and this criterion have been 

computed based on finit observed time points so information of othere time points are not 

consedered in this criterion. But in Fig.2 we observed that fitted trajecrories of viral load 

abtained form the functional model is as well as the marginal model and sometimes perform 

better rather than the marginal model. Therefor the proposed functional linear regression 

model is a flexible alternative approach to common classical models, that is applicable to the 

cases of sparsely sampled longitudinal data. Therefore connection of FDA methodology with 

longitudinal data is a fairly recent undertaking that presents a promising way for future 

researchs. 
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