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BACKTESTING VAR ESTIMATION UNDER GARCH AND 

GJR-GARCH MODELS 

Aleš Kresta 

 

Abstract 

The important and no less interesting part of financial risk management is the risk modelling. 

Commonly utilized measure of risk (not only by banks and insurance companies) is Value at 

Risk. Since the financial time series are typical by non-constant volatility over time, it is 

crucial for Value at Risk calculation to model the standard deviation of returns correctly. In 

the paper we assume (relatively simple) models based on GARCH and GJR-GARCH models 

with Student distributions of innovations. These models are back-tested assuming the 

investment into Prague stock market index. The period utilized for back-testing is from 1993 

till 2012, i.e. 4,627 daily values. The evaluation is made by means of the detected number of 

exceptions, i.e. the cases in which the observed losses were bigger than estimated Value at 

Risk on a given probability level. Also well-known statistical tests due to Kupiec and 

Christoffersen are utilized. According to results the assumed models are not accurate – the 

risk is underestimated, but bunching of the exceptions is not present. 
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Introduction  

Value at Risk (henceforth VaR) is generally accepted as a measure of risks which the 

financial institutions are exposed to. Simply speaking, the Value at Risk represents maximum 

loss observed with a given confidence level, i.e. there will be loss bigger than VaR only with 

the probability level of one minus confidence level (for banks and insurance companies the 

confidence levels are 99% and 99.5%). 

For Value at Risk estimation we can generally recognize three groups of methods: 

variance-covariance method, (filtered) historical simulation and Monte Carlo simulation. 

While it is crucial for all the methods to estimate the future volatility correctly, we can 

distinguish also the methods which assume the volatility to be constant over time and methods 
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modelling variance over time. Both type models were tested for example by Alexander and 

Sheedy (2008). 

Majority of the recent papers published on risk backtesting topic is focused on the 

dependency modelling (i.e. the authors assume the portfolio composed of more than one 

asset). We can mention for instance papers published by Huang, Lee, Liang, and Lin (2009), 

Ignatieva and Platen (2010) or Kresta and Tichý (2012). In these papers the accuracy of 

models was assessed, but there were not given much attention to the length of period utilized 

for parameters estimation. 

In the paper we examine the effect of the chosen period size utilized for parameters 

estimation on the backtesting results. For the computational simplicity we focus on one asset 

portfolio, i.e. only one risk factor is assumed and thus the dependence modelling problems are 

avoided. In the paper we assume (relatively simple) autoregressive models with 

heteroscedasticity modelled by GARCH and GJR models with Student innovations. 

The goal of the paper is to backtest these volatility models for different estimation 

period sizes. The backtesting is performed for the investment into the Prague stock market 

index over the period 1993-2012.  

The paper is organized as follows. Applied volatility models are defined in the next 

section. Then, Value at Risk and method of its backtesting are described. In the last section, 

utilized dataset is described and backtesting results are presented. 

 

1 Volatility models 

Volatility models have become important tool in time series analysis, particularly in financial 

applications. Engle (1982) observed that, although the future value of many financial time 

series is unpredictable, there is a clustering in volatility. He proposed autoregressive 

conditional heteroskedasticity (ARCH) process, which has been later expanded to generalized 

autoregressive conditional heteroskedasticity (GARCH) model by Bollerslev (1986). Further 

extension assumed in this paper is asymmetric GJR model proposed by Glosten, Jagannathan, 

and Runkle (1993). There were also proposed other volatility models such as IGARCH, 

FIGARCH, GARCH-M, EGARCH, etc. However these are not subject of study in this paper. 

For both models the conditional mean will also be assumed. Thus the models of time 

series  N

ttx
1  will be of general form as follows,  

 tt

R

i
itit xx  ~

1
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
 , (1) 
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  0,1~~
 tt , (2) 

where 0  is unconditional mean of the series, i  are autocorrelation coefficients for lag 1 up 

to R , t  is modelled standard deviation (volatility) and t
~  is a random number from Student 

probability distribution (henceforth t). 

 

1.1 GARCH model 

The GARCH model was proposed as the extension of ARCH model in order to avoid 

problematic parameters estimation, when there are many of them. The model takes the 

following form, 
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where 0 , i  and j  are parameters needed to be estimated. The positive variance is assured 

if 00  , ii  0  and jj  0 . The model is stationary if 1
11
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1.2 GJR model 

It was shown, firstly by Black (1976), that there is usually different impact of the positive and 

negative shocks on the volatility. GJR model, proposed by by Glosten et al. (1993), takes this 

into account. It is similar to the GARCH model (3), but if the previous innovation was 

negative (dummy variable jti  ) the impact on volatility is bigger (by the parameter j ). The 

model takes the following form,  
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where jti   is a dummy variable which equals to one when innovation jt  is negative and null 

otherwise. Variables 0 , i , j and j  are parameters needed to be estimated. The positive 

variance is assured if 00  , ii  0 , jj  0  and jjj  0  and model is 

stationary if 1
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2 VaR and backtesting procedure 

Value at Risk (VaR) is nowadays commonly accepted measure of the risk. If we assume a 

random variable X  – the profit from asset / portfolio with the (un)known distribution 

function XF , VaR at a given probability level   is the maximum loss which will occur in 

1  cases (confidence level), 

       xFRxXVaR X:sup . (5) 

VaR is usually estimated for one day ahead period and then (if needed) recalculated for longer 

periods. Mostly utilized values of   are 15%, 5%, 1% and 0.5%. For further explanation of 

VaR concept and methods utilized for its estimation see e.g. (Jorion, 2006). 

There are three basic approaches to VaR estimation – (i) analytical formula utilizing 

parametrical probability distribution function, (ii) stochastic (Monte Carlo) simulation that 

estimates the quantile of a given distribution numerically, and (iii) (filtered) historical 

simulation that relates VaR estimation to the quantile obtained from historical observations. 

For all the models the accurate prediction of returns’ volatility is fundamental. In this paper 

we assume that the financial returns can be modelled by the AR-GARCH and AR-GJR 

processes, which were described in the previous section. When parameters of these processes 

are estimated, VaR can be calculated as follows, 

     qxxVaRVaR t

R

i
ititt  


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1011, ˆˆˆ: , (6) 

where 0̂  and i̂  are estimated coefficients of conditional mean, 1ˆ t  is estimated standard 

deviation by one of the models defined in previous section and q  is an appropriate quantile 

of the innovations distribution (Student distribution). 

By means of backtesting procedure the model is verified. This procedure is based on 

the comparison of the risk estimated at time t  for time 1t  with the true loss observed at 

time 1t . Within the backtesting procedure on a given time series the following two 

situations can arise – the loss is higher or lower than its estimation, 
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While the former case is denoted by 1 as an exception, the latter one is denoted by zero. If the 

model is accurate, than roughly   n1  exceptions (where n  is the length of the data set 
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utilized for backtesting) should be experienced. Bigger quantity of exceptions means, that the 

model underestimates the risk and vice versa. For further details see e. g. (Hull, 2006). 

Mostly applied statistical tests are due to Kupiec (1995) and Christoffersen (1998). 

Kupiec’s test (henceforth K-test) is derived from a relative amount of exceptions, i.e. whether 

their quantity is from the statistical point of view different from the assumption. The null 

hypothesis is that the observer probability of exception occurring is equal to the assumed. A 

given likelihood ratio on the basis of 2  probability distribution with one degree of freedom 

is formulated as follows: 
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where ex  is expected probability of exception occurring, obs  is observed probability of 

exception occurring, 0n  is the number of zeros and 1n  is the number of ones (exceptions).  

By contrast, in order to assess whether the exceptions are distributed equally in time,  

i.e. without any dependence (autocorrelation), we should define the time lag first. Therefore, 

we replace the original sequence by a new one, where 01, 00, 11 or 10 are recorded. The null 

hypothesis is that the probability of exception occurring is independent on the information 

whether the exception has occurred also previous day. Then we have the likelihood ratio as 

follows (C-test): 
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where  iIjI ttij  1Pr  and 
11100100

1101

nnnn

nn
obs




 . This test statistic has 2  

probability distribution with one degree of freedom. 

 

3 Results 

Particular models described in the previous section will be applied on data series of log-

returns calculated from historical series of Prague stock market index (index PX-50 and PX, 

henceforth only index) for period from September 5, 1993 till October 5, 2012.1 The input 

                                                
1 The index PX is calculated from March 20, 2006. In that date it took over the values of the index PX-50, which 

is calculated from April 5, 1994. The previous values of index PX 50 has been calculated ex-post. 
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data was downloaded from the webserver www.czechwealth.cz. The size of the series is 4,627 

daily returns, from which the first 250 observations are left for initial estimation of parameters 

and 4,377 observations are utilized for backtesting procedure. The evolution of the log-returns 

is depicted in Fig. 1. 

Fig. 1 The evolution of returns of index from 5. 9. 1993 till 5. 10. 2012. 

 

Source: data from www.czechwealth.cz, own elaboration 

It is apparent that there are clusters with higher volatility of returns. The highest 

volatility is in the second half of the year 2008 – last financial crisis. Also other periods 

possess increased volatility of returns –summer 2006, second half of the year 1998, the end of 

1993, etc. Basic descriptive characteristics of returns are depicted in Tab. 1. 

 

Tab. 1: Statistic description of observed returns 

Characteristics Value 

Mean 0.023% 

Median 0.028% 

Standard deviation 1.529% 

Skewness 0.301 

Kurtosis 13.857 

Returns autocorrelation 0.191 

Autocorrelation of the square of the returns 0.495 

Source: own calculation 
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The following results from the characteristics are apparent: (i) although the median is 

close to the mean, due to nonzero skewness we can conclude that the probability distribution 

of the returns is skewed, (ii) also high kurtosis suggests the presence of heavy tails so that the 

normal distribution cannot be utilized for modelling purposes, (iii) the autocorrelation of the 

mean is small, but present and (iv) the autocorrelation of the square of the returns is relatively 

high – this suggest that the use of conditional volatility model is necessary. 

For the parameters estimation of whole period process only the first autoregressive 

coefficient and only first order coefficients for volatility equation were found statistically 

significant for both assumed models. Thus we further assume only 1-1-1 models. In the Tab. 2 

we provide the summary of parameters estimated from the whole dataset as well as the values 

of log-likelihood function (LLF), Akaike information criteria (AIC) and Bayesian information 

criteria (BIC).2 As can be seen from the table, LLF (and thus also AIC and BIC) is slightly 

higher for the GJR model, but estimated parameters are similar for both models (parameter 1

is relatively small). 

 

Tab. 2: Estimated parameters of particular models from the whole period 

Model AR(1)-GARCH(1,1)-t AR(1)-GJR(1,1)-t 

Estimated 

parameters 
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848.0

6482.2

129.0

00057.0

1

1

0

1

0

























e
 

767.7

0695.0

115.0

846.0

7755.2

131.0

00048.0

1

1

1

0

1

0





























e

 

LLF 1,4015.4 1,4022.9 

AIC -2,8017 -2,8030 

BIC -2,7972 -2,7978 

Source: own calculation 

                                                

2 Akaike information criteria is computed as LLFk  22  and Bayesian information criteria (BIC) is 

computed as   LLFkn  2log , where n  is the number of observations, k  is the quantity of parameters to be 

estimated and LLF  is the value of log-likelihood function. 
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The models (each with 1R , 1P , 1Q ) were backtested with different periods 

utilized for parameters estimation and the ratio of observed quantity of exceptions to the 

expected quantity were recorded. The results are depicted on Fig. 2. The ratios should be 

ideally equal to one or at least close to one (as we want the quantity of observed exceptions to 

be approximately equal to the expected quantity). As can be seen, the trend of the ratio is the 

same for both models (and also for all the probability levels). The ratio of observed quantity 

of exceptions to the expected quantity is decreasing with the increasing size of period utilized 

for parameter estimation. The explanation of this is probably following. With the increase of 

the period length the estimated parameter   is increasing on average (as with the longer 

period the extreme values are more likely to be observed – tails are heavier), which increases 

the estimated Value at Risk.  

From the figure we can clearly distinguish the difference between two groups of ratios. 

Ratios for probability levels 15% and 5% are around 1. For the short estimation periods 

(lower than 70 days) they are above 1 – the risk is underestimated; for longer estimation 

periods (above 70 days) they are below 1 – the risk is overestimated. Ratios for probability 

levels 1% and 0.5% are above 1 for all the assumed estimation periods. Thus, the risk is 

always underestimated. For the best risk estimation, the period of length 240 days should be 

utilized for parameters estimation. 

 

Fig. 2 The ratios of observed and expected quantities of exceptions for different periods 

utilized for parameters estimation (from 20 days till 250 days with the step of 10 days) 

and different models (GARCH-t in left, GJR-t in right) 

 

 
Source: own calculation 
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In the Tab. 3 and Tab. 4 the p-values of the defined statistical tests are summarized for 

estimation period size of 70 and 240 days. According to the p-values we can reject the 

bunching of exceptions (all the p-values of C-test are higher than 5%). However, the accuracy 

of the model is problematic. For probability levels 15% and 5% the models are accurate only 

when parameters are estimated from last 70 days. For the probability levels 1% and 0.5% (the 

levels important for financial institutions and their regulatory authorities) the GJR model can 

be rejected as inaccurate (all the p-values are lower than 5%) and the GARCH model is 

accurate for 240 days period utilized for parameters estimation. 

 

Tab. 3: P-values of tests for utilized period of parameters estimation of 70 days 

model GJR-t GARCH-t 

probability level 15% 5% 1% 0,50% 15% 5% 1% 0,50% 

P-value of K test 95,2% 7,0% 0,0% 0,0% 6,9% 55,2% 0,0% 0,0% 

P-value of C test 94,7% 44,7% 19,0% 82,4% 8,6% 6,8% 8,9% 61,8% 

Source: own calculation 

Tab. 4: P-values of tests for utilized period of parameters estimation of 240 days 

model GJR-t GARCH-t 

probability level 15% 5% 1% 0,50% 15% 5% 1% 0,50% 

P-value of K test 1,3% 6,2% 4,7% 1,4% 0,1% 1,1% 20,4% 20,2% 

P-value of C test 66,2% 6,3% 55,0% 19,7% 49,0% 7,5% 35,9% 61,8% 

Source: own calculation 

 

Conclusion  

The development of the accurate model for the risk estimation is essential for all the financial 

institutions. Challenging part of each method is volatility modelling and prediction. In this 

paper we have shown that the backtesting results are also influenced by the size of the period 

utilized for parameter estimation. For the investment into Prague stock market index we have 

shown that for the backtesting results of described models the bunching can be rejected, i.e. 

models react to the volatility increase instantly. But these models are not accurate and more 

sophisticated models should be assumed. We also found out that with the increasing size of 

the period for parameters estimation the quantity of exceptions is decreasing. 
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