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Abstract 

The very nature of Corporate Social Responsibility (CSR) has brought about the need for 

common tools which can be used to represent, test and synthesize knowledge and beliefs from 

diverse and amorphous origins. This paper investigates the use of Bayesian networks for 

knowledge representation of Risk and Opportunities Arising from Environmental, Social and 

Governance issues. It is based on an example that uses the data from MSCI, which provides 

research, ratings and analysis of corporate management of environmental and social risk 

factors on over 5,000 global companies. Bayesian networks are often used for eliciting, 

confronting and synthesizing both expert and layman knowledge. They enable us to update 

our beliefs and expectations regarding complex systems in a rigorous way given new or 

conjectured evidence and they provide a practical decision support system for elaborating 

strategies and policy making in the area of the corporate social responsibility.  
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Introduction  

This paper investigates the potential use of Bayesian networks for modelling the knowledge 

of risk and opportunities arising from environmental, social and governance issues. It is 

exploits data from MSCI which provides research, ratings and analysis of corporate 

management of environmental and social risk factors on over 5,000 global companies. The 

challenge is both formal, in the logical sense, and semantic in terms of dealing with both 

imprecision and uncertainty. These issues of Causal Calculus were first addressed in the 

seminal papers by Trygve Haavelmo (Pearl, 2013) and Herbert Simon (1953), but it was Pearl 

who first provided the formal and logical apparatus for causal calculus and inference under 

imprecision and uncertainty. Bayesian networks are probabilistic graphical models that can be 
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used to represent belief networks, which are in essence joint probability distributions, based 

on empirical evidence and/or expert knowledge. These models provide graphical structures 

for representing knowledge about complex systems in a very efficient and intuitive manner. 

Each node in the graph generally represents an observable or latent random variable. The 

relations between the nodes represent probabilistic dependencies, i.e. conditional probability 

distributions between the linked variables. An essential characteristic of Bayesian networks, 

when properly designed, is their ability to portray simple conditional independence and causal 

relationships between variables. Hence instead of dealing with a highly complex 

interconnected graph each node is only connected to nodes that directly affect or are directly 

affected by it (please, see the theoretical section below). We note that it is possible to 

elaborate many possible or matching networks given a set of observable data. However, 

networks that reflect the underlying causal relationships between variables often provide the 

simplest and most practical networks. The design and elaboration of causal networks 

generally necessitates expert knowledge of sorts and cannot be extracted automatically using 

learning algorithms. Bayesian networks have been used for eliciting, confronting and 

synthesizing both expert and consumer perception, e.g. Cain (2001) summarized them in a 

system of concrete steps to capture and represent the world as described by different 

stakeholders. They also enable us to update our beliefs and expectations regarding complex 

systems in a rigorous way given new or conjectured evidence and they provide a practical 

decision support system for elaborating strategies and policy making. 

 

1 Theoretical Background 

This section provides a review of the fundamental concepts that underpin Bayesian networks 

as well as illustrative examples. Bayesian reasoning is based upon Bayes’ Rule, which can 

derive from the basic rules of probability calculus. 

 

)()|(),( bPbaPbaP   (1) 

 

In Equation 1, P(a,b) is the joint probability of both events a and b occurring, P(a|b) is the 

conditional probability of event a occurring given that event b occurred, and P(b) is the 

probability of event b occurring. 
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Figure 1: Simple Example of Bayesian Reasoning with associated Bayesian Network 

 

 

Symmetry Equation leads to conditional probability of b given a single piece of information a. 
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Figure 1 provides a simple example of a Bayesian network with two nodes i.e. random 

variables Shape:{“Square” and “Circle”} and Colour:{Black, White}) and 9 elements in the 

sample data. In this example all of the variables are binomial (i.e. equivalent to Boolean). 

Note, however, that Bayesian networks can easily be extended to variables with multiple 

states or classes. The directed arcs (arrows) between the nodes generally represent causal 

relationships between those nodes. The relationship however is not necessarily causal which 

can lead to Bayesian networks which are more difficult to interpret. The existence of a 

relationship between two nodes implies the existence of conditional probability distribution 

between the two variables concerned. When more than n variables are involved the 

distribution becomes n-dimensional and more complex. Efficient and tractable Bayesian 

P(Square)=0.6 

P(Circle)=0.4 

P(Black)=0.3 

P(White)=0.7 

P(Black|Square))=P(Black).P(Square|Black)/P(Black|Square)=0.3x(2/3)/(1/3)=0.6 

P(Square|Black))=P(Black).P(Square|Black) =0.3x(2/3)=0.2 

Square Circle 
0,18 0,42 

0,12 0,28 

Joint Probability Distribution 
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networks generally have more parsimonious relationships that avoid the risk of combinatory 

explosion. 

The absence of a directed arc between two nodes implies conditional independence. 

Conditional independence of two random variables a and c given b holds when 

 

)|()|()|,( bcPbaPbcaP   (3) 

 

 Equivalently, we could have said that a and c are conditionally independent given b 

when c doesn't tell us anything more about a if we already know b: 

 

)|(),|( baPcbaP   (4) 

 

 Equations (3) and (4) can be shown to be equivalent by using the basic relations of 

probability (see equations 5.). 
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Table 1 and Fig. 2: Example of Conditional Independence and Equivalent JPD provide an 

example of population with particular characteristics that can be modelled using conditional 

independence and the corresponding Bayesian network Table 1 synthesizes this population of 30 

individuals (which in effect constitute a learning set) with three possible characteristics (Y, R and B) 

which may or may not be possessed by each individual.  

Note that the tabular representation is merely for compactness and convenience and has no 

particular significance. The existence of conditional independence for both Y and Not Y can be 

checked using equation 3. 

 

12/6*12/412/2)|()|()|,(  YBPYRPYBRP  

18/8*18/918/4)|()|()|,(  YBPYRPYBRP  
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Table 1: Sample of 30 Individuals with 3 Different Characteristics  

(Random Variables:Y,B,R) 

   ,R,  ,R,  ,R, 

 Y, , Y,R, Y,R,  ,R, 

 Y, , Y, , Y,R,  ,R, 

 Y, ,B Y, ,B Y,B,R  ,B,R 

 , ,B Y, ,B Y, ,B Y,B,R  ,B,R 

 ,B  ,B  ,B  ,B,R  ,B,R 

 

 

Fig. 2: Example of Conditional Independence and Equivalent JPD 

 

 

The probability distribution of a node can be determined by considering the distributions of its 

parents. In this way, the joint probability distribution for the entire network can be specified. This 

relationship can be captured mathematically using the chain rule in Equation 3. 
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Equation 6 states that the joint probability distribution for node x is equal to the product of the 

probability of each component xi of x given the parents of xi. 

There are several measures that can be used to evaluate the strength of the link between two 

nodes. A common metric is the measure of conditional mutual information (Meretakis & Wüthrich, 

1999). 

For any two variables Ai, Bj, conditional mutual information is defined as 
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Intuitively this function measures how well P(Ai,Bj|C) can be approximated on average by 

P(Ai|C) and P(Bj|C). 

Entropy is a well-established concept for measuring the amount of information contained in a 

probability distribution and comes from the work of Shannon on Information Theory. Shannon’s 

entropy for discrete distribution with n outcomes with probability pi is defined as: 


x

xpxppH ))(ln()()(  (8) 

This concept can be extended to several distributions. The joint entropy of two random variables is 

defined as: 


yx

yxpyxpyxpH
,

)),(ln(),()),((  (9) 

If two random variables are independent their joint entropy is the sum of their two entropies. To show 

this we recall that the joint distribution of two independent random variables is given by 

 ).()(),( ypxpyxp   (10) 

Using equation 10 we have 
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The concept of entropy can be extended to that of relative entropy and which can be regarded 
as a measure of the distance between distributions. If two distributions are defined in exactly 
the same outcome space then distance between two distributions is known as Kullback-
Leibler (1951) distance or divergence between two distributions is as follows: 
 


x

KL xqxpxpqpD ))(/)(ln()(),(  (12) 
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Although it is called a distance this entity is not symmetric. i.e. 

),(),( pqDqpD KLKL    (13) 

K-L distance is a fairly intuitive measure of the information that is shared between two factors 

or variables. 

To resume, Bayesian models and the key concept of conditional independence provide 

graphical and mathematical structures for representing qualitative and quantitative knowledge about 

complex systems in a very efficient and intuitive manner. In mathematical terms, Bayesian networks 

enable what would otherwise be a highly complex generally intractable joint probability distribution to 

be broken down into much simpler and understandable local probability distributions. These structures 

call upon Bayesian probabilities which can combine “objective” and “subjective” probabilities that is 

direct observations together with constructs and conjectures. 

 

2 Analysis of the MSCI data base 

To investigate the applicability of Bayesian networks in CSR data from MSCI 

Intangible Value assessment (IVA) data base, was analyzed using the EQ unstructured 

automated learning algorithm. This database provides research, ratings and analysis of 

corporate management of environmental and social risk factors on over 5,000 global 

companies. 

The MSCI IVA database provides information and rating regarding three key 

questions (MSCI, 2013): 

 

• What are the key ESG (Environmental, Social and Governance) risks and opportunities most 

applicable to each industry sector? 

 

• Do companies have risk management strategies commensurate with the ESG risks they 

face? 

 

• Do companies have strategies to capture potential opportunities in the ESG space? 
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Fig. 3: Non Causal Bayesian Network for IVA Rating year 2012 

 

 

Fig. 3 shows the non-causal Bayesian network extracted, using automated learning, for 5,000 

global companies for year 2012. Each node represents a field within the MSCI database. These ratings 

are arrived at using the MSCI IVA rating methodology which requires the input of many experts as 

well as the detailed analysis of company behaviour and practices. The colour codes correspond to 

MSCI groupings of variables, for example the “Sustainable Governance Factor“ is divided into the sub 

factors 1) SG Strategy, 2) Strategic Capability / Adaptability and 3 Traditional Governance Concerns. 

We note that this network is non-causal; hence the relationships between the nodes only represent 

conditional probability distributions. In general, many equivalent Bayesian networks may exist for the 

same joint probability distribution. 

This network was extracted using the EQ learning algorithm (Munteanu et al, 2001) which is 

one of many unsupervised structural learning algorithms for extracting Bayesian networks directly 
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from data. We note that different automated learning techniques do not necessarily lead to the same 

Bayesian network and that these methods vary in terms of their statistical efficiency and calculation 

time. 

We first illustrate the formal significance of each node by taking the example of the node 

entitled “Human Rights/ Child and Forced labour” we observe that 6.99% of the observed population 

have a score below 3.612. Fig. 4 shows the distribution of values of this variable, which has a range of 

0 to 10, using four classes. Hence each node corresponds to a histogram or probability distribution. 

 

Fig. 4: A Priori Distribution of Human Rights Variable 

 

We observe that the node “Human Rights and Forced labour” is linked by a relation to 

“Oppressive Regimes”.  

Fig. 5 shows the A Priori distributions of the variables Oppressive Regimes and 

Human Rights, i.e. we suppose no knowledge about the regime. Fig. 6: Impact of Oppressive 

Regimes on Human Rights, however, shows how these two distributions are related and provide an 

example of “what if” analysis. We can see for example what the distribution of human rights is for the 

top 9.94% of individuals with an Oppressive Regime score of less than 4.045 (50.16%, 41.06%, 

6.47%,2.32%). The same analysis is conducted for each class. It is important to n ote that it is also 

possible to examine the impact of any possible change in the values of the distributions.  

 

Fig. 5: A Priori Distributions Oppressive Regimes and Human Rights  
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Fig. 6: Impact of Oppressive Regimes on Human Rights  

 

 

 

 

Fig. 7 shows the joint probability distribution between the nodes Risk Factor and Industry Specific 

Risk. This is equivalent, in this case, to a classical contingency table. 

 

Fig. 7: Impact of Risk Factors on Industry Specific Risks 

 

 

Fig. 8 shows the joint probability distribution for a node Corporate Governance which 

has two parents Impact of Environmental Management Capacity and Traditional Governance 

Concerns. We note the augmented complexity of the table as the number of parents and 

classes increases. The probability in terms of percentage, for example, that the Corporate 

Governance score will be between 0 and 2.538 given that the Environmental Management 

Capacity score is between 0 and 2.905 and that the Traditional Governance score is between 0 

and 3.526 is 61.23%. 
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Fig. 8: Impact of Environmental Management and Traditional Governance on 

Corporate Governance 

 

 

Fig. 9: Mutual Information for the IVA Bayesian Network 
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Fig. 9 shows the mutual information associated with the arcs of the IVA Bayesian Network. 

The figure in the top part of the each box situated on each arc gives the Mutual Information 

between the nodes. The second figure shows the relative Mutual Information (as a percentage) 

in the direction of the arc parent to child. The bottom figure is the relative mutual information 

in the opposite direction (child to parent. We observe, for example, that the “Performance” 

variable does not give a lot of information (7.45%) about the variable below “Industry” but 

that the reverse is not true (27.23%). 

Fig. 10 displays the relative node strengths for the Bayesian network extracted from the IVA 

database. We recall that the strength of an arc can be measured in terms of the importance of 

the probabilistic relation between the nodes; typically we can use the mutual information 

measure given by equation 7. The global node force or strength is the sum of the force of both 

the entering arcs and the outing arcs; it provides some indication of the relative importance of 

a variable on its immediate neighbourhood. Unsurprisingly, Fig. 10 clearly indicates the 

importance of the variable Region on its neighbouring variables. 

Fig. 10: Node Strengths for IVA Bayesian Network 
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3 Discussion and Conclusion 

The power of Bayesian networks and their capacity to represent complex systems that bring 

into play both uncertainty and imprecision should not be underestimated. Much attention has 

already been given to issues of probability and the propagation of evidence  in the form of 

new information through Bayesian networks. The semantic power of Bayesian networks and 

their capacity to deal with imprecise and overlapping concepts is, maybe still, not fully 

appreciated. 

The IVA database example shows how easy it is to build a basic Bayesian network by 

directly exploiting an existing database. Clearly, further work can be done to transform this 

network into a causal model as well as integrate dynamic aspects, i.e; build a dynamic 

Bayesian network. Further, it is possible to combine this synthetic vision of key CSR issues 

with many of the existing databases relating to business and economics, etc. 

The capacity to add and combine overlapping and imprecise constructs without 

impacting unduly on the overall performance of a network provides an important tool for 

confronting theories and theory development. Pushed to the extreme, workable networks can 

be built that combine knowledge from very different disciplines providing we are able to 

establish bridging concepts. In a similar fashion expert knowledge can be confronted with 

consumer perception using Bayesian Delphi methods that are constructed through the joint 

elaboration of belief systems of expert panels. This issue is of kew importance in CSR where 

conflicting positions can lead to very different policies. 

The issue of conflicting belief systems leads us to a very pragmatic feature of 

Bayesian networks that is their capacity to analyze possible future scenarios in a consistent 

and coherent fashion. In fact, Bayesian networks provide a rigorous framework for studying 

“what if” scenarios. Hence it is possible to analyze the impact of new evidence as well a new 

theory on the performance of a network and more particularly target variables such as ratings  

Another important feature of Bayesian analysis is the possibility of combining these 

networks with target analysis. This technique consists in optimising a network in such a 

manner that it explains in the behaviour of a target variable, for example a particular rating, in 

terms of the rest of the network. Further, once such an explanatory network has been built 

algorithmic tools exist that enable the target cell to be optimized. Hence it is possible to 

answer the question what are the most efficient set of actions to be taken to respect or achieve 

a certain level of standards. This makes Bayesian networks an extremely practical and 

actionable tool that can be exploited for policy making. 
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Bayesian networks have been claimed to be one of the most promising technological 

innovations of recent years that will have a major impact on Society and they are likely to 

constitute one of the most important tools for Knowledge Management par excellence. 
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