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Abstract  

The classical autocorrelation coefficient estimator in the time series context is very sensitive 

to the presence of outlying measurements in the data. This paper proposes several new robust 

estimators of the autocorrelation coefficient. First, we consider an autoregressive process of 

the first order AR(1) to be observed. Robust estimators of the autocorrelation coefficient are 

proposed in a straightforward way based on robust regression. 

       Further, we consider the task of robust estimation of the autocorrelation coefficient of 

residuals of linear regression. The task is connected to verifying the assumption of 

independence of residuals and robust estimators of the autocorrelation coefficient are defined 

based on the Durbin-Watson test statistic for robust regression. The main result is obtained for 

the implicitly weighted autocorrelation coefficient with small weights assigned to outlying 

measurements. This estimator is based on the least weighted squares regression and we 

exploit its asympotic properties to derive an asymptotic test that the autocorrelation 

coefficient is equal to 0. Finally, we illustrate different estimators on real economic data, 

which reveal the advantage of the approach based on the least weighted squares regression. 

The estimator turns out to be resistant against the presence of outlying measurements. 
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1 Introduction 

The stationary autoregressive process of the first order has been described as a popular  model 

for economic time series in a vast number of econometric references. Its model for a time 

series          is commonly denoted as AR(1) and has the form 

                                                                                                                                  (1) 

where the parameter          is the (population) autocorrelation coefficient of the first 

order, shortly autocorrelation coefficient (Chatfield, 2004). However, we observe only 

a sequence         in practice.  
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       The classical estimate of   in the context of an AR(1) process is equal to  

                                                                ̂   
∑       

 
   

∑   
  

   
.                                                          (2) 

In the statistical theory of time series, it is a common task to test the null hypothesis  

                                                                         .                                                               (3) 

The asymptotic one-sided test has been described to reject the null hypothesis if and only if 

                                                        ̂    
 

 
      √

   

      
.                                                  (4)     

This approximative test was derived for normally distributed errors (Chatfield, 2004) and can 

be additionally approximated by 

                                                                       ̂  
 

√ 
.                                                                (5) 

        The autocorrelation coefficient  ̂ is too sensitive to the presence of outlying 

measurements (outliers) in the data and is biased for a contaminated normal distribution, i.e. 

for a time series with the majority of data points with normally distributed random errors and 

a minority of data points following a distribution with a much higher variance. There have 

been various attempts to estimate the autocorrelation coefficient in a robust way 

(Shevlyakov & Smirnov, 2011). 

       This paper has the following structure. Section 2 proposes a highly robust estimator of the 

autocorrelation coefficient for an AR(1) process, which is based on the least weighted squares 

regression estimator. Sections 3 and 4 are devoted to robust estimation of the autocorrelation 

coefficient for a sequence of regression residuals. The main result is obtained in Section 4 for 

the implicitly weighted autocorrelation coefficient with small weights assigned to outlying 

measurements. This estimator is based on the least weighted squares regression and we study 

its asymptotic approximation. The robust methods are compared with the classical estimator 

in an analysis of real economic data in Section 5, where only the estimator of Section 4 

confirms its robustness under the data contamination by an outlying measurement. 

 

2 Autocorrelation coefficient based on robust regression 

This section recalls the least weighted squares regression and proposes a new estimator of the 

autocorrelation coefficient based on this highly robust regression estimator. In general, one of 

possible ways for defining a robust autocorrelation coefficient of an AR(1) process is to 

exploit the following general form of (Shevlyakov & Smirnov, 2011). Let  ̂  denote a robust 

estimator of the slope in the regression of         against             Let  ̂  denote 
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a robust estimator of the slope in the regression of           against          Then, the 

population autocorrelation coefficient can be estimated by  

                                                                    √  ̂  ̂                                                              (6)  

       The estimator (7) inherits the robustness properties of the robust regression estimator 

used to obtain the estimates  ̂  and  ̂   This straightforward way allows to define a robust 

autocorrelation coefficient based on regression quantile (Koenker, 2005), trimmed least 

squares (Jurečková & Sen, 1996), or least weighted squares (Víšek, 2002) estimators. In 

practice, the autocorrelation coefficient is often used in the context of linear regression to 

verify the assumption of independence of the random regression errors. Therefore, we 

investigate an alternative approach for defining a tailor-made robust estimator of the 

autocorrelation coefficient of regression residuals. 

 

3 Autocorrelation coefficient of regression residuals 

This section proposes a robust estimator of the autocorrelation coefficient tailor-made for 

regression residuals. Such approach is suitable e.g. for a robust alternative to the Cochrane-

Orcutt transformation (Cochrane & Orcutt, 1949). 

      In our previous work (Kalina, 2013), we investigated the Durbin-Watson statistic 

(Durbin & Watson, 1950) computed for residuals of regression quantiles or trimmed least 

squares estimators. Let us consider the linear regression model 

                                                                                                                    (7) 

The classical Durbin-Watson test statistic fulfills   

                                                   
∑          

  
   

∑   
  

   
 ≐ 2    ̂                                                       (8) 

where         are residuals of the least squares estimator.  

       Let us now consider the Durbin-Watson test statistic computed using residuals of the 

regression quantile estimator of   in the linear regression with some parameter   in the 

interval        This statistic will be denoted by       We apply (8) to obtain a robust estimator 

of the autocorrelation coefficient in the form  

                                                            ̂      
   

 
                                                              (9)    

It holds from the asymptotic equivalence of     and   (Kalina, 2012) that the estimator  ̂   

is a consistent estimator of the population autocorrelation coefficient     
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       The autocorrelation coefficient for the residuals of the trimmed least squares estimator 

denoted as  ̂    can be defined in an analogous way. By considering the asymptotic behaviour 

of the Durbin-Watson test statistic computed from the LTS residuals (Kalina, 2012), we 

conclude that  ̂    is a consistent estimator of the population autocorrelation coefficient    

   

4 Implicitly weighted autocorrelation coefficient of regression residuals 

The robust autocorrelation coefficient of regression residuals based on the least weighted 

squares regression can be defined in an analogous way as in Section 3 following the general 

idea (6) of (Shevlyakov & Smirnov, 2011). Nevertheless, the procedure would not be very 

suitable for the least weighted squares estimator, because it ignores the optimal weights 

corresponding to individual observations. Therefore, we will rather consider two different 

versions of the weighted autocorrelation coefficient and their properties. Particularly, we will 

derive a robust estimator from the exact hypothesis test and also its asymptotic version based 

on the asymptotic representation of the least weighted squares estimator (Víšek, 2011).  

       The least weighted squares (LWS) estimator was proposed by (Víšek, 2002) for the linear 

regression with several independent variables as a robust estimator of the regression 

parameters with a high breakdown point. The estimator does not include the outlier detection 

intrinsically, while the potential outliers are only down-weighted and not trimmed away 

completely. This estimator is based on implicit weighting of individual observations and turns 

out to possess a high breakdown point, which is a statistical measure of sensitivity against 

noise or outliers in the data. The estimator may use linearly decreasing weights or adaptive 

data-dependent weights proposed by (Čížek, 2011), allowing to combine robustness and 

efficiency in a very appealing way. The LWS estimator attains a 100 % asymptotic efficiency 

of the least squares under Gaussian errors (Čížek, 2011). It is robust to heteroscedasticity 

(Víšek, 2011) and diagnostic tools for checking its assumptions are available (Kalina, 2012).  

 The computation of the LWS estimator is intensive and an approximative algorithm can 

be obtained as a weighted version of the algorithm proposed for the least trimmed squares 

(LTS) regression (Rousseeuw & van Driessen, 2006), which represents a special case of least 

weighted squares with weights equal to zero or one only. While the LTS estimator is very 

reliable for outlier detection (Hekimoglu, Erenoglu & Kalina, 2009), it suffers from a high 

sensitivity to small deviations near the center of the data. On the other hand, the advantage of 

the LWS estimator is a small local sensitivity. 
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      Let us consider the LWS regression in the model (7). The residuals of the LWS regression 

will be denoted by         and the optimal weights found by the LWS estimator will be 

denoted as          We will consider weighted residuals with fixed weights         in 

the form  

                                                      
    √                                                                (10)    

      The first definition of the LWS-autocorrelation coefficient is 

                                                        ̂     
∑ √             

 
   

∑     
  

   
                                              (11) 

equal to the weighted autocorrelation coefficient (Choi, Kim, Feng, Lee & Jung, 2012) with 

fixed weights, while the optimal weights by the LWS regression estimator are used. Let us 

now recall the Durbin-Watson statistic      (Kalina, 2013) computed from the residuals of 

the LWS regression. There holds a connection  

                                                             ̂      
     

 
                                                       (12) 

which allows to conclude that  ̂    is a consistent estimator of the population autocorrelation 

coefficient  . It inherits the robustness properties of the LWS regression estimator described 

above, particularly the high breakdown point.  

       Now we use the asymptotic theory to derive another version of the LWS-based 

autocorrelation coefficient, which is asymptotically equivalent to (12). This reasoning will 

allow us to study asymptotic properties of  ̂   , which remain unknown for the robust 

estimators of  Section 2. The asymptotic approximation of      enables us to conclude that 

 ̂    is asymptotically equivalent to 

                                                    
      

    

    
    

∑       
 
   

 ∑   
  

   
                                      (13) 

where κ is obtained from the asymptotic approximation to the LWS residuals and can be 

estimated easily (Kalina, 2013). This is a more realistic setting compared to the approach 

of (11), which considers the weights found by the LWS to be fixed. We can formulate the 

following theorem. 

  

Theorem 1. Under the assumption of normally distributed random errors in the regression 

model, the estimator      
  computed from the residuals of the LWS regression with the 

adaptive weights of (Čížek, 2011) converges in distribution to a random variable with normal 

distribution 

                                                               ( 
 

 
 

   

      
)                                                        (14) 
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Thanks to the 100 % efficiency of the LWS estimator with adaptive weights, also the 

asymptotic variance of      
  is equal to the asymptotic variance of the classical 

autocorrelation coefficient computed for the residuals of the least squares regression. 

 

5 Example: Investment data 

This section illustrates the robustness properties of several versions of the autocorrelation 

coefficient for regression residuals, including the robust ones proposed in this paper.  

       We consider the linear regression of real gross private domenstic investments in the USA 

in     USD against the GDP. The data retrieved from the internet (www.stls.frb.org/fred) are 

yearly measurements from the years 1980-2001 and are shown in Figure 1. To show the 

harmful effect of outliers in the data, we consider also a contaminated data set shown in 

Figure 2, which is different from the original data only in the value of one observation. The 

residuals of the LWS regression are shown in Figure 3. The figure clearly shows the 

autocorrelation structure in the residuals.  

       We computed the estimates of the regression parameters using the least squares, L1-

estimator (a special case of regression quantiles), and LWS estimator (with linearly 

decreasing weights). Clearly, the random errors in the regression are not independent and the 

AR(1) model seems suitable. Thus, it is important to estimate the parameter    Various 

versions of the autocorrelation coefficient and Durbin-Watson statistic were computed based 

on residuals of different robust regression estimators of the regression parameters. For the 

LWS regression, we use the weighted version of the autocorrelation coefficient (11).  

       The results of the computations are shown in Table 1. Comparing the original and the 

contaminated data sets, both the least squares estimator and the L1-estimator are heavily 

influenced by the presence of the outlying measurement. The estimation of the autocorrelation 

coefficient based on these two regression estimators is also heavily influenced by the only 

outlier in the data. While the L1-estimator is known to be robust with respect to outliers in the 

response, it is revealed to be very non-robust with respect to a single outlier in the 

independent variable. Only the weighted autocorrelation coefficient based on the least 

weighted squares turns out to be resistant against the presence of the outlying measurement. 

       To summarize, this paper extends the theoretical results on the Durbin-Watson test 

statistic for robust regression (Kalina, 2012) and defines a robust autocorrelation coefficient 

based on robust regression. While methods based on ranks of observations have appealing 

http://www.stls.frb.org/fred
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properties in variety of situations (Jurečková & Kalina, 2012), our work is the first approach 

to autocorrelation based on implicit weighting based on ranks of residuals in a suitable model. 

The numerical example in Section 5 computes the autocorrelation coefficient from regression 

residuals in both real and contaminated data. The sensitivity of the classical autocorrelation 

coefficient as well as the robustness of the LWS-autocorrelation coefficient is revealed.  

 

Tab. 1: Results of the analysis of the investment data in Section 5 

 Least squares L1-estimator LWS estimator 

Original data    

Intercept -582.0 -516.5 -509.2 

Slope 0.239 0.230 0.224 

Autocorrelation coefficient 0.791 0.791 0.797 

Durbin-Watson statistic 0.418 0.418 0.407 

    

Contaminated data    

Intercept -306.6 -401.9 -465.3 

Slope 0.193 0.210 0.221 

Autocorrelation coefficient -0.080 0.555 0.804 

Durbin-Watson statistic 2.159 0.889 0.392 

Source: own computation. 

 

Fig. 1: Investment data in the example of Section 5 

 

Source: www.stls.frb.org/fred. 

 

 

http://www.stls.frb.org/fred
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Fig. 2: Contaminated investment data 

 

Source: own modification of data of Fig. 1. 

 

Fig. 3: Residuals of the least weighted squares in the regression of real private domestic 

investments against GDP in the contaminated investment data set 

 

Source: own computation 

 

 

 



 

596 
 

Acknowledgment 

The research was financially supported by the Neuron Fund for Support of Science. 

 

References 

Chatfield, C. (2004). The analysis of time series. An introduction. 6th ed. Boca Raton: 

Chapman & Hall/CRC. 

Choi, J., Kim, M., Feng, L., Lee, C., & Jung, H. (2012). A new weighted correlation 

coefficient method to evaluate reconstructed brain electrical sources. Journal of Applied 

Mathematics, 2012, Article ID 251295, 1-11. 

Čížek, P. (2011). Semiparametrically weighted robust estimation of regression models. 

Computational Statistics & Data Analysis, 55(1), 774-788. 

Cochrane, D., & Orcutt, G.H. (1949). Application of least squares regression to relationships 

containing autocorrelated error terms. Journal of the American Statistical Association, 44, 32-

61. 

Durbin, J., & Watson, G.S. (1950). Testing for serial correlation in least squares regression I. 

Biometrika, 37, 409-428. 

Hekimoglu, S., Erenoglu, R.C., & Kalina J. (2009). Outlier detection by means of robust 

regression estimators in use in engineering science. Journal of Zhejiang University Science A, 

10(6), 909-921. 

Jurečková, J., & Sen, P.K. (1996). Robust statistical procedures: Asymptotics and 

interrelations. New York: Wiley. 

Jurečková, J., & Kalina, J. (2012). Nonparametric multivariate rank tests and their 

unbiasedness. Bernoulli, 18(1), 229-251. 

Kalina, J. (2012). On multivariate methods in robust econometrics. Prague Economic Papers, 

21(1), 69-82. 

Kalina, J. (2013). Autocorrelated residuals of robust regression. In Löster, T., & Pavelka, T. 

(Eds.), The 7-th International Days of Statistics and Economics (pp. 551-560). Slaný: 

Melandrium. 

Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press. 



 

597 
 

Rousseeuw, P.J., & van Driessen, K. (2006): Computing LTS regression for large data sets. 

Data Mining and Knowledge Discovery, 12(1), 29-45. 

Shevlyakov, G., & Smirnov, P. (2011). Robust estimation of the correlation coefficient: An 

attempt of survey. Austrian Journal of Statistics, 40(1&2), 147-156. 

Víšek, J.Á. (2002). The least weighted squares I. Bulletin of the Czech Econometric Society, 9 

(15), 31-56. 

Víšek, J.Á. (2011). Consistency of the least weighted squares under heteroscedasticity. 

Kybernetika, 47, 179-206. 

 

Contact  

RNDr. Jan Kalina, Ph.D. 

Institute of Computer Science of the Academy of Sciences of the Czech Republic 

Pod Vodárenskou věží 2, 182 07, Praha 8, Czech Republic 

kalina@cs.cas.cz 

 

Bc. Katarína Vlčková 

Institute of Computer Science of the Academy of Sciences of the Czech Republic 

Pod Vodárenskou věží 2, 182 07, Praha 8, Czech Republic 

vlckova@cs.cas.cz 

 

mailto:kalina@cs.cas.cz

