
The 8
th

 International Days of Statistics and Economics, Prague, September 11-13, 2014 

986 
 

OUTLIERS IN TIME SERIES  

Luboš Marek  

Abstract 

In the study of economic time series we work often with large amount of data. Some 

observations take unusual values and are significantly different from other observations. 

These data are referred to as outliers. The causes of these outliers can be different. It may be 

a mistake in the data. Most of these errors are relatively easy to remove if you have a careful 

control of data. On the other hand, there may occur the data that are observed properly and 

still have the character of outliers. These observations make it difficult to build right models 

for time series and can misrepresent any predictions. 

In the article we describe the different types of outliers and their integration into the stochastic 

time series. We work with transfer function models, which are mainly based on ARIMA 

models and on linear dynamic models. In our paper we show that each outlier must 

necessarily leave specific track in residuals. This fact is the base for detection outliers, to 

describe their type and methods of integration into the model. We describe in our article the 

theory of outliers including their detection. Described theory will be illustrated on practical 

data. 
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Introduction 

Time series often contain observations caused by unexpected events, called 

interventions. Another type may be caused, e.g., by typographical errors when entering data 

or errors in data aggregation; and it may happen that some observation values are simply 

misaligned with most of the others. They are called outliers. If the time of and reasons for 

their occurrence are known, methods of intervention analysis can be applied to them. If the 

time of outlier occurrence is unknown, it is important to identify outliers and clean the time 

series from them. The entire theory of outliers in time series is clearly connected with 

methods of intervention analysis and, consequently, with the theory of dynamic regression 

models – cf., e.g., (Abraham, Ledolter 1983, Anderson 1976, Pankratz 1991, Granger, 
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Newbold 1986 and Wei 1990).  The example is from monetary area (Stankovičová, Vlačuha, 

Ivančíková 2013, Bartošová, Forbelská 2012 and Buc, Klieštik 2013). 

1 Types of outliers 

Three basic types of models have been derived in the theory of outliers, describing their most 

frequently occurring types. Namely, they are: 

 Additive Outlier (AO). It is, in essence, a pulse, and hence can be modeled as an 

intervention. 

 Level Shift (LS). It is a shift; again, it can be described as an intervention. 

 Innovational Outlier (IO). As we will see below, this is the most complex type of 

outlier; unlike in the previous two, an effect of distant observation after time T  is 

present (i.e., in times , 1, 2, ...T T T  ). 

1.1 Models for outliers 

Let us consider time series tz  with zero mean value described with the aid of an AR(1) 

process; that is 

 1(1 ) t tB z   , (1) 

equivalently 

 
1

1

(1 )
t tz

B
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
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We will now illustrate outliers using a generated time series tz  governed by an AR(1) 

model with the parameter value 1 0.7  . We have generated 100 values of the series to show 

visual and computational circumstances of the above-mentioned types of outliers. Our AR(1) 

model is, of course, a special type of the general ARIMA(p,d,q)(P,D,Q)L model; in this more 

general case the series tz  would be described by the formula 
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L
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Regarding general processes, they are supposed to be stationary (either immediately or after 

relevant transformations) and invertible; these assumptions of course imply certain 

requirements for their parameters (Coufal 2012). We are now going to illustrate the outliers 

using a series governed by the selected AR(1) model, it would be easy to generalize our 

considerations to a general ARIMA model characterized by formula (3).  



The 8
th

 International Days of Statistics and Economics, Prague, September 11-13, 2014 

988 
 

Let us now suppose that, instead of series 
tz , a "contaminated" series tY  is observed, in 

which a contaminating component ( )f t  is added to the original series tz  

 ( )t tY f t z  , (4) 

where function ( )f t  corresponds to one of the above-mentioned outlier types. The 

contaminating component may be of various types in practice; for the sake of simplicity, we 

suppose that it can be expressed in the form of a rational transition function, as is usual in the 

theory of outliers; namely 

 
( )

( )
( )

t

B
f t X

B




 , (5) 

where tX  is a deterministic binary variable standing for an intervention in series tz  at time t ; 

( )B  is a polynomial of degree h  in the numerator of the fraction in formula (5); and ( )B  

is a polynomial of degree r  in the denominator of the fraction in formula (5). 

1.2 Additive outliers 

Let us now consider the simplest polynomials in formula (5), i.e., set all coefficients in 

( )B  and ( )B  equal to zero except for 0 . Since we are now considering an additive 

outlier, let us denote 0  by A  for our purposes. This means 

 0( ) tf t X  (6) 

and consequently 

 t A t tY X z  , (7) 

where 

 
1,

0,
t

t T
X

t T


 


  . (8) 

The series tY  is thus the same as series tz  except for a sole observation at time t T . At time 

t T  the value of time series tY  is either larger (for 0A  ) or smaller (for 0A  ) than tz . 

In this case the outlier is additive. Figure 1 shows the effect of an additive outlier in the 

generated time series tz : the additive outlier has been artificially introduced into the 

generated time series by adding the value 8A   to the observation at time 57t T  . Apart 

from time 57t  , both series are identical and their charts are indistinguishable. The additive 

outlier is depicted by a dotted line at time 57t  . 
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If we know the time at which the outlier occurs, we can estimate the value of A
 within 

the framework of the transition-function model. Using a preliminary approximation, we 

substitute for 
tz  in formula (7) from formula (2), obtaining formula 

 

Fig. 1: Original and AO-contaminated time series 

Source: Own calculations 
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
. (9) 

The first term in formula (9) is the pulse intervention variable (known from intervention 

models), while the second term is the error component governed by an AR(1) model, by 

which series tz  is also governed. We can see it is the classical transition-function model. In most 

instances, however, we do not know the time of the outlier occurrence and have to determine that 

time first.  

Let us generalize the assumptions about time series tz . If we suppose that the series is 

governed by a general ARIMA (p,d,q)(P,D,Q)L model, formula (9) becomes  
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1.3 Permanent level shift 

Let us again consider function ( )f t  in formula (5) and set all coefficients in ( )B  and 

( )B  equal to zero except for 0  and 1 . This time, we denote 0  by symbol S , and we set 

1 1  . Then it is true that  

 11 1B B     , (11) 

hence 

 ( ) S
tf t X





, (12) 

where again  
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The expression  ( / ) ts X   is one of the known ways to describe a jump intervention, which 

is, in our case, identical with a permanent level shift of the time series. formulas (12) and (13) 

can be rewritten as 
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t

t T
X
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
 , (14) 

where ( ) 1B  , and consequently ( ) S tf t X . Going back to formulas (12) and (13), we can 

write  

 S
t t tY X z


 


. (15) 

Formula (15) shows that, for a permanent level shift, the contaminated series tY  is identical 

with tz  for t T ; at time T  the permanent shift by a value of S  occurs. The values of tY  

will be increased (for 0S  ) or decreased (for 0S  ) for all t T . 

Figure 2 shows the effects of a permanent level shift. We have artificially introduced 

into series tz  an outlier at time 57t   with a value of 8S  . Until time 56t  , both series 

are identical; and after time 57t  , series tY  is permanently shifted by a value of 8S   

(larger by eight units), which is depicted by a dotted line. The original series tz  is depicted by 

a full line, as the explanations make clear. 

Both the additive outlier considered above and the present permanent level shift are 

such that the outlier effects are clearly visible in charts, despite the AR(1) autocorrelation 

structure of the underlying series tz  and the presence of random component t . Another 
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factor is the size of dispersion 2

  
of the random component; if its value is large, visual 

detection of the outlier may be more difficult. The structure of the ARIMA model for series 

tz  may also play a role by partially suppressing the outlier effect. 

If we know the time at which the outlier occurs, we can, similarly to the instance 

considered above, estimate the value of 
S  within the framework of the transition-function 

model. 

Fig. 2: Original and LS-contaminated time series 

Source: Own calculations 

Using a preliminary approximation, we substitute for tz  in formula (15) from formula 

(2), obtaining  
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The first term in formula (16) is the intervention variable, and the second term is the error 

component governed by an AR(1) model, by which series tz  is also governed. We can again 

see that it is the classical transition-function model.  

Similarly to the instance of additive outlier, we can consider a general 

ARIMA(p,d,q)(P,D,Q)L model for tz , obtaining  
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1.4 Innovational outlier 

Let us again consider function ( )f t  in formula (5) and set all coefficients in ( )B  and 

( )B  equal to zero except for 0  and 1 . This time, we denote 0  by symbol I , and 

suppose 1 1  . Now the form of function ( )f t  becomes 

 
1

( )
1

I
tf t X

B
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 , (18) 

where again 
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Formula (18) for function ( )f t  looks like a temporary pulse intervention and represents an 

example of the Koyck-type model with a rate of decrease equal to 1 1  . This type of outlier 

is called innovational. A time series with an innovational outlier is expressed as follows: 

 
11

I
t t tY X z

B




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
. (20) 

Fig. 3: Original and LS-contaminated time series 

Source: Own calculations 

 

What is clear here is that series tY  is identical with series tz  until time T ; then the 

values of tY  are shifted by I  units at time T ; namely, shifted upwards (if 0t  ) or 

downwards (if 0t  ); after time T  the outlier effect exponentially fades out, and the rate of 

this decay depends on the value of 1 1  . Figure 3 shows the effects of an innovational 

outlier.  
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If we know the time at which the outlier occurs, we can, similarly to the instances 

considered above, estimate the value of I  within the framework of the transition-function 

model. Using a preliminary approximation, we substitute for tz  in formula (20) from formula 

(2), obtaining  

 
1 1

1

1 1

I
t t tY X

B B




 
 

 
. (21) 

The first term in formula (21) is the intervention variable, and the second term is the error 

component governed by an AR(1) model, by which series 
tz  is also governed. We can again 

see that it is the classical transition-function model of Koyck type.  

Similarly to the instance of additive outlier, we can consider a general 

ARIMA(p,d,q)(P,D,Q)L model for tz , obtaining  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L L

I
t t tL D d L D d

L L

B B B B
Y X

B B B B

    


   
 

   
. (22) 

2 Example 

The following figure shows the daily time series of the CZK/USD exchange rate. The 

source of the date is the Czech National Bank (CNB – www.cnb.cz) and the series covers the 

time period from August 2013 until April 12, 2014. The chart clearly shows the CNB 

intervention at the beginning of November 2013, when the CNB made a decision to 

artificially weaken the CZK exchange rate with respect to EUR (and USD too), which was 

manifested by a large jump divided into several consecutive days.  

At first sight it is clear that it is modified outlier type Level Shift – cf. Figure 2. We can see 

that till to the time point 69T   (November, 6) is the character of time series stable and a 

point 69T   occurs permanent level shift range of S . We now have to estimate a suitable 

model for this time series and incorporate the level shift outlier into the model. We use 

formulas (12) and (13), or (14) a (15). After a number of analyses (study of stationarity, ACF, 

PACF, EACF, and other identification methods) the following model was identified as the 

most suitable one: 

 

 1 0 1(1 ) t t tY  =  ( B) X       , (23) 

 

where tY  is the CZK/EUR exchange rate time series, tX  is an intervention (binary) variable, 

and t  is normally distributed white noise. 

http://www.cnb.cz/
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Fig. 4: Rate CZK/USD 

Source: Own graph 

 

We obtained final model as 

 1 10.9801 0.9626 0.9595t t t t tY  = Y   X X     . (24) 

 

This model was successfully confirmed at several stages of verification – tests of stationarity 

and of unit roots, as well as analyses of residua of the input and output series. The quality of 

this model is very good, with index of determination value 0.967. The series tY  itself is 

governed by an AR(1) model and the value of parameter 1   is close to one, as could be 

expected (this model is close to a random walk). The quality of this model is also clear from 

the autocorrelation and partial autocorrelation functions, whose values do not significantly 

depart from zero. We can use this model for forecasts building (Soukup 2012). 

 

Tab. 1: ACF and PACF output 

AUTOCORRELATIONS                                                        

  1- 12    -.07 -.05 -.05 -.01 -.11  .00 -.15  .14 -.05  .03  .10  .08  

  ST.E.     .07  .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  

   Q        1.0  1.4  1.8  1.8  4.1  4.1  8.4 12.0 12.4 12.6 14.4 15.7  

                                                                       

 13- 24    -.06 -.15 -.00  .06 -.09 -.00  .09  .06 -.09 -.05 -.01 -.07  

  ST.E.     .08  .08  .08  .08  .08  .08  .08  .08  .08  .08  .09  .09  

   Q       16.3 20.8 20.8 21.6 23.2 23.2 24.9 25.6 27.1 27.6 27.6 28.6  

 

PARTIAL AUTOCORRELATIONS                                                

  1- 12    -.07 -.05 -.06 -.02 -.12 -.02 -.13  .10 -.06  .01  .10  .07  

  ST.E.     .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  

                                                                       

 13- 24    -.01 -.13  .03  .04 -.07  .00  .06  .06 -.12 -.04 -.04 -.11  

  ST.E.     .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  .07  

Source: SCA output 

Conclusion 
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The aim of the article was to describe the basic types of outliers in time series and their 

integration in the model. Our example describes outlier type of Level Shift. This type implies 

the permanent level shift time series. As a suitable time series we selected a series of rates 

CZK/USD. This time series and its noise component is operated by stochastic process 

(process ARIMA or SARIMA). It is therefore impossible to apply classic regression analysis 

model. It is necessary to use more advanced techniques, which are dynamic regression 

models, namely models with transfer function. The model we have created can be used for 

subsequent analysis or for making predictions. The model quality is very good, its 

determination index is close to one, and the model successfully passed all stages of 

verifications.  This model will be further used in analyses to follow this paper. 
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