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CONSEQUENCES OF ASSUMPTION VIOLATIONS 

REGARDING ONE-WAY ANOVA 

Tomáš Marcinko  

 

Abstract 

Nearly all classical statistical hypothesis tests are derived under a few fundamental 

assumptions, which may or may not be met in real world applications, and the classical 

analysis of variance is no exception. The main aim of this article is to study consequences of 

the most crucial assumption violations concerning one-way ANOVA tests, mainly their effect 

on type I errors. The focus will be on the classical F test, as well as on popular procedures of 

a multiple means comparison. Based on a simulation study the consequences of non-normality 

and heteroscedasticity will be examined for various sample sizes. The resulting type I errors 

of classical tests will be compared with those of appropriate nonparametric tests, specifically 

with the errors of the Kruskal-Wallis test and the multiple means comparison based on 

pairwise comparisons using Wilcoxon rank sum tests with Bonferroni correction or tests 

based on bootstrap methodology. 

Key words:  one-way ANOVA, F test, multiple means comparison, assumption violations, 

nonparametric alternatives 
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Introduction 

The problem of testing for equality of means in a one-way independent groups design is very 

frequent in many field of science. Analysis of variance (abbreviated ANOVA) refers to 

a statistical technique that is used to analyze the differences between means of two or more 

groups. In other words, the one-way ANOVA, inter alia, tests the null hypothesis that samples 

in two or more groups are drawn from populations with the same mean values. 

 In this article we will focus on a very common one-way ANOVA F-test, which is fully 

justified under the assumptions of independence of observations, normality and homogeneity 

of group variances (homoscedasticity). However, these assumptions may not be met in real 

world applications. 
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 The main aim of this article is a simulation study that will examine the consequences 

of non-normality and heteroscedasticity on a type I error of the ANOVA F-test and two 

popular multiple means comparison methods that are used to determine which group means 

differ – the Tukey’s HSD (honestly significant difference) test and the Bonferroni correction. 

The results obtained by these classical tests will then be compared with those of appropriate 

nonparametric tests, specifically with the Kruskal-Wallis one-way analysis of variance 

by ranks, where the multiple means comparison will be based on pairwise comparisons using 

the Wilcoxon rank sum tests with Bonferroni correction or tests based on the bootstrap BCa 

(bias-corrected and accelerated) method. 

 

1 Parametric and nonparametric approach to one-way ANOVA 

When dealing with fixed-effects one-way ANOVA, the most popular approach of many 

statisticians, researchers or data analysts is the parametric one, i.e. using the ANOVA F-test, 

often with some common multiple means comparison methods (e.g. Tukey’s HSD) used when 

the difference between group means is significant. 

 Let’s assume we have a fully randomized experiment with a single factor and we wish 

to determine, whether the population means in all groups are the same. In order to examine 

the mere effects of non-normality or heteroscedasticity, we will only consider a balanced 

design with the number of observation in each group being the same. Let ijy , i = 1, 2, …, I, 

j = 1, 2, …, J, denote the jth observation in ith group, where I is a number of groups 

(treatments) and J is a number of observations in each group. Obviously, the total number of 

observations is n = IJ. The means model of one-way analysis of variance can be written as 

,ijiijy    

where i , i = 1, 2, …, I, are the group means and ij , i = 1, 2, …, I, j = 1, 2, …, J, are 

zero-mean random errors. Hence, the null hypothesis can be written as I  ...:H 210 . 

 The ANOVA F-test assumes that the observations ijy  are independent and identically 

distributed in every group and follow a normal distribution with mean i  and variance 2 , 

which is the same for all groups. The fundamental procedure of ANOVA is based on 

comparing the variability between groups with the variability within groups, which can be 

represented via between-group mean square 
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respectively. When the assumptions of independence, normality and homoscedasticity hold 

then the statistic 

W

B

MS

MS
F  

follows the F distribution on I – 1 and n – I degrees of freedom. Therefore, we can reject 

the null hypothesis in favor of the alternative hypothesis (the population means i  are not all 

equal), if the value of the F statistic is greater than a critical value from the F distribution. 

The technical derivation of the ANOVA F-test can be found in many statistical textbooks 

(for example Cramér, 1946). 

 If the null hypothesis is rejected by the ANOVA F-test, the multiple comparison 

procedures are often used to determine, which group means differ. In a one-way ANOVA 

involving I group means, we need to make (I – 1) / 2 pairwise comparisons simultaneously. 

In this article, we will consider two common multiple comparison methods. The first one, the 

Bonferroni correction (Dunn, 1961), is based on replacing a significance level  with  / I 

in order to obtain an overall confidence level of simultaneous confidence intervals greater 

than or equal to 1 – . Although this method is extremely easy to use, it may also be quite 

conservative (i.e. having a type I error lower than the significance level). The second multiple 

comparison method that will be considered is the Tukey’s HSD (Tukey, 1953), which is 

specifically designed for comparing group means in ANOVA setting. It is based on the 

distribution of a studentized range and simultaneously compares all possible pairs of group 

means. For further details on these methods see Miller (1981). Over the years several other 

multiple comparison procedures were developed – a comprehensive review of the most 

important methods can be found in (Day and Quinn, 1989). 

 In this article we will compare the results of the ANOVA F-test with the results of 

the most popular nonparametric alternative – the Kruskal-Wallis one-way analysis of variance 
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by ranks (Kruskal and Wallis, 1952). For multiple means comparison, the Wilcoxon rank-sum 

tests (Wilcoxon, 1945) with the Bonferroni correction may be used. Another procedure that 

will be considered is the bootstrap BCa method (Efron, 1987) with the Bonferroni correction. 

However, some other methods, such as Neményi test (Neményi, 1963), may be preferable. 

 

2 Simulation study 

The following simulation study will focus on the Monte Carlo estimation of a type I error 

of the parametric and nonparametric ANOVA tests shortly discussed in the previous section 

under various violations of normality and homoscedasticity.  

 For the purpose of examining the effects of non-normality on the type I error, data 

in every group were simulated from the following distributions (hence, the null hypothesis 

of the ANOVA test holds): 

- normal distribution: X ~ N(100; 100) 

- modified Student’s distribution: X ~ 100 + 5.7735 t(3) 

- uniform distribution: X ~ U(82.6795; 117.3205) 

- gamma distribution: X ~ Γ(100; 1) 

- log-normal distribution: X ~ LN(4.6002; 0.00995) 

- skew normal distribution: X ~ SN(88.417; 15.303; 3) 

- shifted exponential distribution: X ~ 90 + Ex(0.1) 

- contaminated normal distribution: X ~ (1 – ε) N(100; 100) + ε N(100; 10 000). 

 Without the loss of generality, all of these distributions (except for a contaminated 

normal distribution, which has larger variance) were calibrated so that they have the 

population mean 100 and the variance 100. The first three distributions (normal, modified 

Student’s and uniform) are symmetric around the population mean and the other four 

distributions (gamma, log-normal, skew normal and shifted exponential) are asymmetric with 

a gamma distribution being the least skewed (γ1 = 0.2) and a shifted exponential distribution 

being the most skewed (γ1 = 2). The skewness of the other two distributions is only moderate 

(γ1 = 0.301 for a log-normal distribution and γ1 = 0.667 for a skew normal distribution). 

Lastly, the contaminated normal distribution is a mixture distribution, where the majority of 

the population comes from a specified normal distribution, whereas a small proportion of the 

population (ε = 0.05) comes from a normal distribution with the same mean but much larger 

variance, i.e. outliers can be drawn from such a population.  
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 For the purpose of examining the mere effects of heteroscedasticity, the group data 

sets were simulated from a normal distribution with same means but various variances. 

 After simulating the data, the ANOVA tests were applied and the type I errors were 

estimated as the proportion of simulated data sets that rejected the null hypothesis, which is 

actually true. The simulation study consisted of 10 000 simulated data sets so that the Monte 

Carlo error was sufficiently low. For the bootstrap method 5 000 bootstrap samples were 

generated. The simulation study was computed in the programming language R version 2.15.3 

(R core team, 2013) using additional packages bootstrap, multcomp and sn. 

 

2.1 The effects of non-normality 

Tables 1 and 2 provide estimates of type I errors for the ANOVA F-test and the 

Kruskal-Wallis test, as well as the aforementioned methods of a multiple means comparison, 

in case of 3 and 5 treatment groups, respectively, under the given violations of normality and 

for various sample sizes. 

 It is quite obvious that the ANOVA F-test has a type I error reasonably close to the 

chosen significance level (for the purpose of this study a significance level 0.05 was used) 

even for small sample sizes and it only becomes a little bit conservative, if there is substantial 

skewness (as in case of an exponential distribution) or in case of long-tailed distributions 

(such as a Student’s t distribution on 3 degrees of freedom). And, as expected, with larger 

sample sizes the type I error gets closer to the nominal significance level. The only exception, 

when the ANOVA F-test was too conservative even for large sample sizes, is the case of 

a contaminated normal distribution. This is of course no surprise, as outliers can have a very 

big influence on the sample mean. 

 On the other hand, the Kruskal-Wallis test performs really well in respect of a type I 

error for any underlying distribution including a contaminated normal distribution. 

Consequently, when we are dealing with contaminated distributions or distributions with 

possible outliers, the Kruskal-Wallis test should always be preferred. However, we have to 

keep in mind that in case of a small sample size it can be a bit conservative, as it is in fact 

an asymptotic test. However, for 3 treatment groups even J = 10 seems to be sufficient. 

Nevertheless, for a larger number of treatment groups a larger sample size might be necessary 

(e.g. for 5 treatment groups the Kruskal-Wallis test is still a bit conservative even for J = 20).  

 When comparing different methods of multiple means comparison, the Tukey’s HSD 

gives clearly the best results. Only for distributions with substantially long tails or with 
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possible outliers, the Wilcoxon tests with the Bonferroni correction may be less conservative. 

On the contrary, the bootstrap BCa method seems to be unusable for multiple comparisons 

unless a sample size is very large (coverage probabilities of bootstrap intervals are only 

asymptotically accurate and in this simulation study even for J = 50 the BCa method led to 

liberal results). 

 

Tab. 1: MC estimation of type I errors for one-way ANOVA (non-normality, I = 3) 

group 

size 
distribution 

ANOVA          

F-test 
KW test 

corrected         

t-tests 

Tukey's 

HSD 

corrected 

Wilcoxon 

corrected 

BCa 

J = 5 

normal 0.0480 0.0428* 0.0402* 0.0491 0.0427* 0.2991* 

t(3) 0.0407* 0.0428* 0.0323* 0.0401* 0.0427* 0.3358* 

uniform 0.0540 0.0428* 0.0452* 0.0532 0.0427* 0.2882* 

gamma 0.0483 0.0428* 0.0408* 0.0487 0.0427* 0.2990* 

log-normal 0.0486 0.0428* 0.0411* 0.0487 0.0427* 0.2991* 

skew normal 0.0471 0.0428* 0.0406* 0.0483 0.0427* 0.3054* 

exponential 0.0390* 0.0428* 0.0324* 0.0382* 0.0427* 0.3519* 

contaminated 0.0372* 0.0430* 0.0306* 0.0382* 0.0423* 0.3671* 

J = 10 

normal 0.0522 0.0493 0.0466 0.0535 0.0416* 0.1461* 

t(3) 0.0445* 0.0493 0.0369* 0.0452* 0.0416* 0.2069* 

uniform 0.0550* 0.0493 0.0473 0.0546* 0.0416* 0.1338* 

gamma 0.0526 0.0493 0.0463 0.0539 0.0416* 0.1474* 

log-normal 0.0528 0.0493 0.0458 0.0539 0.0416* 0.1483* 

skew normal 0.0524 0.0493 0.0448* 0.0532 0.0416* 0.1532* 

exponential 0.0442* 0.0493 0.0364* 0.0439* 0.0416* 0.2123* 

contaminated 0.0343* 0.0484 0.0308* 0.0355* 0.0403* 0.3276* 

J = 20 

normal 0.0520 0.0497 0.0450* 0.0507 0.0435* 0.0860* 

t(3) 0.0469 0.0497 0.0405* 0.0465 0.0435* 0.1471* 

uniform 0.0530 0.0497 0.0452* 0.0529 0.0435* 0.0722* 

gamma 0.0524 0.0497 0.0449* 0.0519 0.0435* 0.0876* 

log-normal 0.0525 0.0497 0.0445* 0.0522 0.0435* 0.0885* 

skew normal 0.0521 0.0497 0.0445* 0.0514 0.0435* 0.0910* 

exponential 0.0467 0.0497 0.0406* 0.0483 0.0435* 0.1319* 

contaminated 0.0317* 0.0487 0.0262* 0.0297* 0.0443* 0.3691* 

J = 50 

normal 0.0511 0.0485 0.0444* 0.0510 0.0441* 0.0606* 

t(3) 0.0479 0.0485 0.0419* 0.0483 0.0441* 0.1061* 

uniform 0.0499 0.0485 0.0448* 0.0513 0.0441* 0.0543 

gamma 0.0507 0.0485 0.0440* 0.0513 0.0441* 0.0581* 

log-normal 0.0510 0.0485 0.0440* 0.0508 0.0441* 0.0586* 

skew normal 0.0503 0.0485 0.0432* 0.0488 0.0441* 0.0609* 

exponential 0.0467 0.0485 0.0401* 0.0471 0.0441* 0.0864* 

contaminated 0.0321* 0.0472 0.0266* 0.0338* 0.0418* 0.3373* 
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Tab. 2: MC estimation of type I errors for one-way ANOVA (non-normality, I = 5) 

group 

size 
distribution 

ANOVA        

F-test 
KW test 

corrected       

t-tests 

Tukey's 

HSD 

corrected 

Wilcoxon 

corrected 

BCa 

J = 5 

normal 0.0477 0.0368* 0.0363* 0.0500 0.0637* 0.8749* 

t(3) 0.0384* 0.0368* 0.0300* 0.0433* 0.0637* 0.9018* 

uniform 0.0522 0.0368* 0.0397* 0.0541 0.0637* 0.8663* 

gamma 0.0478 0.0368* 0.0364* 0.0502 0.0637* 0.8729* 

log-normal 0.0470 0.0368* 0.0368* 0.0499 0.0637* 0.8724* 

skew normal 0.0476 0.0368* 0.0358* 0.0493 0.0637* 0.8771* 

exponential 0.0415* 0.0368* 0.0284* 0.0401* 0.0637* 0.9116* 

contaminated 0.0379* 0.0357* 0.0290* 0.0399* 0.0629* 0.8991* 

J = 10 

normal 0.0477 0.0398* 0.0370* 0.0504 0.0308* 0.4174* 

t(3) 0.0412* 0.0398* 0.0330* 0.0438* 0.0308* 0.6377* 

uniform 0.0497 0.0398* 0.0385* 0.0518 0.0308* 0.3210* 

gamma 0.0480 0.0398* 0.0372* 0.0500 0.0308* 0.4172* 

log-normal 0.0484 0.0398* 0.0367* 0.0503 0.0308* 0.4231* 

skew normal 0.0477 0.0398* 0.0360* 0.0489 0.0308* 0.4482* 

exponential 0.0426* 0.0398* 0.0309* 0.0420* 0.0308* 0.6655* 

contaminated 0.0327* 0.0388* 0.0267* 0.0344* 0.0301* 0.6319* 

J = 20 

normal 0.0477 0.0457* 0.0371* 0.0475 0.0376* 0.1270* 

t(3) 0.0417* 0.0457* 0.0329* 0.0435* 0.0376* 0.4089* 

uniform 0.0483 0.0457* 0.0383* 0.0474 0.0376* 0.0982* 

gamma 0.0477 0.0457* 0.0370* 0.0478 0.0376* 0.1287* 

log-normal 0.0480 0.0457* 0.0370* 0.0475 0.0376* 0.1291* 

skew normal 0.0456* 0.0457* 0.0367* 0.0474 0.0376* 0.1415* 

exponential 0.0429* 0.0457* 0.0331* 0.0426* 0.0376* 0.3539* 

contaminated 0.0250* 0.0444* 0.0196* 0.0275* 0.0353* 0.6518* 

J = 50 

normal 0.0524 0.0503 0.0416* 0.0526 0.0422* 0.0682* 

t(3) 0.0482 0.0503 0.0398* 0.0512 0.0422* 0.2462* 

uniform 0.0523 0.0503 0.0435* 0.0529 0.0422* 0.0573* 

gamma 0.0519 0.0503 0.0419* 0.0535 0.0422* 0.0681* 

log-normal 0.0519 0.0503 0.0415* 0.0536 0.0422* 0.0704* 

skew normal 0.0510 0.0503 0.0410* 0.0517 0.0422* 0.0717* 

exponential 0.0476 0.0503 0.0365* 0.0478 0.0422* 0.1219* 

contaminated 0.0331* 0.0500 0.0250* 0.0330* 0.0426* 0.8313* 

 

2.2 The effects of heteroscedasticity 

As it was already mentioned, for the purpose of examining the mere effects of 

heteroscedasticity the data were simulated from a normal distribution with the mean 100 and 

the variance 100 ki, i = 1, 2, …, I, i.e. the group variances may not be the same. The constants 
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ki are given in tables 3 and 4, which provide estimates of type I errors for the considered tests 

under various violations of homoscedasticity and for various sample sizes. 

Tab. 3: MC estimation of type I errors for one-way ANOVA (heteroscedastity, I = 3) 

group 

size 
k 

ANOVA        

F-test 
KW test 

corrected       

t-tests 

Tukey's 

HSD 

corrected 

Wilcoxon 

corrected 

BCa 

J = 5 

(1; 1; 1) 0.0509 0.0446* 0.0415* 0.0521 0.0437* 0.3012* 

(0.9; 0.9; 1.2) 0.0553* 0.0478 0.0446* 0.0536 0.0452* 0.2986* 

(0.75; 0.75; 1.5) 0.0680* 0.0538 0.0554* 0.0653* 0.0503 0.2941* 

(0.8; 1.0; 1.2) 0.0554* 0.0481 0.0461 0.0553* 0.0448* 0.2966* 

(0.5; 1.0; 1.5) 0.0695* 0.0590* 0.0576* 0.0678* 0.0574* 0.2925* 

J = 10 

(1; 1; 1) 0.0513 0.0470 0.0441* 0.0507 0.0416* 0.1459* 

(0.9; 0.9; 1.2) 0.0548* 0.0487 0.0458 0.0540 0.0411* 0.1465* 

(0.75; 0.75; 1.5) 0.0649* 0.0546* 0.0559* 0.0630* 0.0448* 0.1403* 

(0.8; 1.0; 1.2) 0.0560* 0.0503 0.0477 0.0545* 0.0412* 0.1448* 

(0.5; 1.0; 1.5) 0.0656* 0.0587* 0.0574* 0.0658* 0.0505 0.1394* 

J = 20 

(1; 1; 1) 0.0503 0.0493 0.0446* 0.0500 0.0427* 0.0899* 

(0.9; 0.9; 1.2) 0.0521 0.0507 0.0468 0.0524 0.0438* 0.0921* 

(0.75; 0.75; 1.5) 0.0606* 0.0559* 0.0546* 0.0593* 0.0473 0.0878* 

(0.8; 1.0; 1.2) 0.0530 0.0514 0.0467 0.0537 0.0441* 0.0912* 

(0.5; 1.0; 1.5) 0.0614* 0.0613* 0.0540 0.0603* 0.0517 0.0838* 

J = 50 

(1; 1; 1) 0.0490 0.0457* 0.0425* 0.0475 0.0402* 0.0585* 

(0.9; 0.9; 1.2) 0.0505 0.0509 0.0447* 0.0513 0.0427* 0.0589* 

(0.75; 0.75; 1.5) 0.0595* 0.0569* 0.0513 0.0581* 0.0480 0.0549* 

(0.8; 1.0; 1.2) 0.0511 0.0486 0.0462 0.0520 0.0425* 0.0587* 

(0.5; 1.0; 1.5) 0.0595* 0.0587* 0.0517 0.0584* 0.0534 0.0534 

 

The estimated type I errors imply that the ANOVA F-test is liberal (i.e. having a type I 

error greater than the significance level) under unequal group variances. Also, the type I error 

seems to be greater in a situation when all group variances differ in comparison with 

a situation when only one group variance is different from the others (average group variance 

being the same) – this effect is more pronounced for a larger number of treatment groups I. 

Moreover, the Kruskal-Wallis test is shown to be a bit less sensitive to the violation 

of homoscedasticity and for a larger number of treatment groups the effect of 

homoscedasticity actually counteracts the effect of inherent conservativeness, which is due to 

asymptotic nature of this nonparametric test.  

On the other hand, the multiple comparison methods (except for the bootstrap BCa 

method, which is only usable for very large sample sizes) tend to be also more liberal, when 

the group variances differ. That is why the inherently more conservative Bonferroni 
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correction of the two-sample t-tests or Wilcoxon sum-rank tests may lead to a type I error that 

is in fact closer to the nominal significance level when compared to the Tukey’s HSD method.  

 

Tab. 4: MC estimation of type I errors for one-way ANOVA (heteroscedastity, I = 5) 

group 

size 
k 

ANOVA         

F-test 
KW test 

corrected        

t-tests 

Tukey's 

HSD 

corrected 

Wilcoxon 

corrected 

BCa 

J = 5 

(1; 1; 1) 0.0470 0.0348* 0.0336* 0.0478 0.0585* 0.8793* 

(0.95; ...; 0.95; 1.2) 0.0493 0.0367* 0.0368* 0.0508 0.0590* 0.8667* 

(0.875; ...; 0.875; 1.2) 0.0599* 0.0412* 0.0480 0.0633* 0.0619* 0.8593* 

(0.8; 0.9; 1; 1.1; 1.2) 0.0509 0.0378* 0.0389* 0.0527 0.0611* 0.8593* 

(0.5; 0.75; 1; 1.25; 1.5) 0.0663* 0.0452* 0.0554* 0.0694* 0.0736* 0.8447* 

J = 10 

(1; 1; 1) 0.0511 0.0453* 0.0377* 0.0495 0.0328* 0.4087* 

(0.95; ...; 0.95; 1.2) 0.0523 0.0439* 0.0386* 0.0510 0.0334* 0.4060* 

(0.875; ...; 0.875; 1.2) 0.0635* 0.0463 0.0511 0.0655* 0.0331* 0.4173* 

(0.8; 0.9; 1; 1.1; 1.2) 0.0528 0.0448* 0.0429* 0.0540 0.0327* 0.4120* 

(0.5; 0.75; 1; 1.25; 1.5) 0.0671* 0.0525 0.0581* 0.0698* 0.0383* 0.3907* 

J = 20 

(1; 1; 1) 0.0516 0.0489 0.0411* 0.0525 0.0384* 0.1021* 

(0.95; ...; 0.95; 1.2) 0.0556* 0.0511 0.0439* 0.0552* 0.0400* 0.1059* 

(0.875; ...; 0.875; 1.2) 0.0645* 0.0534 0.0548* 0.0644* 0.0404* 0.1046* 

(0.8; 0.9; 1; 1.1; 1.2) 0.0570* 0.0512 0.0443* 0.0572* 0.0414* 0.1077* 

(0.5; 0.75; 1; 1.25; 1.5) 0.0696* 0.0581* 0.0615* 0.0728* 0.0480 0.0984* 

J = 50 

(1; 1; 1) 0.0475 0.0473 0.0373* 0.0471 0.0373* 0.0693* 

(0.95; ...; 0.95; 1.2) 0.0511 0.0490 0.0399* 0.0510 0.0382* 0.0653* 

(0.875; ...; 0.875; 1.2) 0.0624* 0.0533 0.0541 0.0635* 0.0397* 0.0640* 

(0.8; 0.9; 1; 1.1; 1.2) 0.0521 0.0495 0.0437* 0.0523 0.0389* 0.0607* 

(0.5; 0.75; 1; 1.25; 1.5) 0.0674* 0.0590* 0.0607* 0.0733* 0.0437* 0.0573* 

 

Conclusion 

The classical one-way ANOVA F-test is derived under the assumptions that the observations 

are independent, normally distributed and that the group variances are equal. The aim of this 

article was to examine the effects of non-normality and heteroscedasticity on type I errors 

of this test, as well as the Kruskal-Wallis test and tests used in a multiple means comparison. 

Based on the results of the simulation study it can be concluded that the non-normality 

has only a small effect on the type I error of the ANOVA F-test. However, when we are 

dealing with outliers or a substantially skewed or long-tailed distribution, the Kruskal-Wallis 

test should be preferred. For a post hoc multiple means comparison the classical Tukey’s HSD 

can be recommended, although it is also conservative for contaminated distributions. 
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On the other hand, in case of unequal group variances both the ANOVA F-test and 

the Tukey’s HSD may be a bit liberal. Although in this situation the Kruskal-Wallis test gives 

somewhat better results in respect of a type I error, it cannot be considered robust against 

heteroscedasticity. Nevertheless, unless we are dealing with a substantial difference between 

group means (e.g. largest standard deviation is larger than twice the smallest standard 

deviation) these tests perform reasonably well. However, when the difference between group 

variances is substantial, tests proposed by Welch (1951) or James (1951) might be preferred. 

 

Acknowledgment 

This paper was supported by the Internal Grant Agency of the University of Economics in 

Prague (project IGA 128/2014 "Consequences of assumption violations of classical statistical 

methods and the possible use of alternative statistical techniques in economic applications"). 

 

References 

Cramér, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press. 

Day, R. W., & Quinn, G. P. (1989). Comparisons of Treatments After an Analysis of 

Variance in Ecology. Ecological Monographs, 59 (4), 433-463. 

Dunn, O. J. (1961). Multiple Comparisons Among Means. Journal of the American Statistical 

Association, 56 (293), 52-64. 

James, G. S. (1951). The comparison of several groups of observations when the ratios of the 

population variances are unknown. Biometrika, 38 (3-4), 324-329. 

Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. 

Journal of the American Statistical Association, 47 (260), 583-621. 

Miller, R. G. (1981). Simultaneous Statistical Inference. New York: Springer. 

Neményi, P. B. (1963). Distribution-free Multiple Comparisons (doctoral dissertation). 

Princeton University, Princeton, New Jersey. 

R core team (2013). R: A language and environment for statistical computing. Vienna: 

R Foundation for Statistical Computing. 

Tukey, J. W. (1953). Some selected quick and easy methods of statistical analysis. 

Transactions of the New York Academy of Sciences, 16 (2), 88-97. 

Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. 

Biometrika, 38 (3-4), 330-336. 



The 8
th

 International Days of Statistics and Economics, Prague, September 11-13, 2014 

985 

 

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 

1 (6), 80-83. 

Contact 

Tomáš Marcinko (xmart14@vse.cz) 

University of Economics, Prague 

nám. W. Churchilla 4, 130 67 Prague, Czech Republic 


