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Abstract 

The purpose of the paper is to suggest an alternative approach to modeling of the cyclical 

component in time series for a defined set of stationary points, which can be used as means of 

validation of economic theories and empirical hypotheses on the business cycle. The method 

constitutes an ordinary least squares estimation (OLS) of a polynomial model, which is 

derived from defined stationary points on the basis of polynomial factorization and integral 

transform. The method is applied to de-trended seasonally adjusted time series. It suggests a 

simple model for the cyclical component, which allows to incorporate any definition of 

business cycle in econometric calculations, thus providing an alternative to the commonly 

used filters (such as the moving average) and simplifies decomposing of time series into 

individual components. Its drawback is however computational effort linked to higher degrees 

of polynomials in long time series. The method is tested on the definition of business cycle 

employed by the U.S. National Bureau of Economic Research (NBER) on the U.S. annual and 

quarterly gross domestic product data, 1947–2013. 
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Introduction 

The purpose of this short paper is to suggest an approach to modeling of the cyclical 

component in time series, which can be adjusted to any economic theory or hypothesis 

concerning business cycle based on its proper definition of stationary points; and test it on the 

data of the U.S. gross domestic product (GDP). The method constitutes an ordinary least 

squares (OLS) estimation of a polynomial derived from a defined set of stationary points with 

the help of Vieta’s formulas and integration. The method is a combination of a deterministic 

calculation, algebra and calculus, and a stochastic estimation, i.e. linear regression.  
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Why is this matter topical? The nature and causes of the business cycle continue to be 

disputed and examined in both theoretical and empirical studies, see e.g. (Egert, Sutherland, 

2014) and (Kaihatsu, Kurozumi, 2014)  or (Chari, Kehoe, McGrattan, 2007) and (Pomenkova, 

Marsalek, 2012)1. The vast majority of these studies derive cyclical fluctuations from time 

series, yt, using a classical decomposition approach in an additive or multiplicative form2: 

𝑦𝑡 = 𝑠𝑡 + 𝑔𝑡 + 𝑐𝑡 + 𝜀𝑡,   𝑦𝑡 = 𝑠𝑡𝑔𝑡𝑐𝑡𝜀𝑡  log 𝑦𝑡 = log 𝑠𝑡 + log 𝑔𝑡 + log 𝑐𝑡 + log 𝜀𝑡  (1) 

where st stands for seasonal component, gt for trend, ct for cyclical component and εt for 

residuals; a recent exemplary study is (Guillen, Rodriguez, 2014). Several studies replace 

classical decomposition with spectral analysis, see e.g. (Wang, 2013). The distinctive feature 

of these methods is that they derive cyclical fluctuations from properties of the examined time 

series rather than from predefined criteria. Economic theory however suggests definitions of 

the business cycle, e.g. two consecutive positive quarterly changes, Δyt-2 < 0, Δyt-1 > 0 and  

Δyt > 0 for an expansion and negative ones, Δyt-2 > 0, Δyt-1 < 0 and Δyt < 0, for a recession, 

which do not become reflected in econometric analysis. Therefore it becomes difficult to 

support theoretical assumptions using ct derived from the use of trend and filters without 

further adjustment, as the number of theoretically defined and empirically found local extrema 

and their frequency may differ; see (Ravn, Uhlig, 2002), (Schenk-Hoppe, 2001), (Movshuk, 

2003) and (Bildirici, Alp, 2012) on this matter.3  

 

1 Method based on defined stationary points 

One of the simplest ways to solve the described problem is to create a method for modeling 

cyclical components, 𝑐𝑡 =  𝑚𝑡 + 𝛾𝑡, which can incorporate any necessary definition of the 

business cycle or of cyclical fluctuations in general. If stationary points (local extrema, 

minima and maxima) can be defined beforehand, a polynomial, i.e. 𝛼0𝑡0
𝑛 + 𝛼1𝑡1

𝑛−1 +  … +

 𝛼𝑛, where n is the number of stationary points plus one, or a dummy variable, 𝐷𝑡 ∈ {0, 1}, 

can be used as mt. The main advantage of polynomials over Dt is the ability to reflect weights 

of individual stationary points while being a single function, as cyclical fluctuations’ 

amplitude may differ over time. Polynomials also often produce higher R2 than dummies. 

The mathematical derivation of a polynomial ct model was performed e.g. in (Bolotov, 

2012). In this paper it will be re-elaborated and performed in five successive steps: 

                                                           
1 This overview reflects the works on business cycle in the SSCI World of Science database, which were the 

closest to the topic of this paper at the date of its completion. 
2 In this paper additive form will be preferred. 
3 It is also possible to mention Howrey’s criticism of Kuznets swing, the ca. 18-year-long cycles. 
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1) Deriving the cyclical component 𝑐𝑡 from yt by seasonal adjustment and de-trending: 

𝑐𝑡 = 𝑦𝑡 − 𝑠𝑡 − 𝑔𝑡  (2) 

2) Defining the set of stationary points by applying the definition-specific criteria to time 

series yt: 

𝑆𝑃 =  {𝑡1, 𝑡2, 𝑡3, 𝑡4 … , 𝑡5}  (3) 

3) Formulating a polynomial from the set SP, i.e. the first derivative of mt, on the basis of 

fundamental theorem of algebra, the Fermat’s theorem and polynomial factorization rules4: 

𝑑𝑚𝑡/𝑑𝑡 = 𝛼0(𝑡 − 𝑡1)(𝑡 − 𝑡2) … (𝑡 − 𝑡𝑛) = 𝛼0 ∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖)  (4) 

4) Integrating  dmt/dt to obtain the mt equation with α0 and αn as unknown parameters: 

𝑚𝑡 = ∫ 𝛼0 ∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖)𝑑𝑡 + 𝛼𝑛   (5) 

5) Formulating the model of ct and performing an ordinary least squares (OLS) estimation of 

α0 and α n, a0 and an, where ∫ ∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖)𝑑𝑡 is the independent variable (regressor), 𝑡𝑖 ∈ 𝑆𝑃. 

𝑐𝑡 = 𝛼𝑛 + 𝛼0 ∫ ∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖)𝑑𝑡 + 𝛾𝑡   (6) 

Corrections for GDP growth and large numbers 

The method also requires corrections for the following two problems to be succesfully 

applied: GDP time series usually show strong trend, which implies growth in absolute values 

of ct in time, and bigger SP sets lead to large numbers (N > 109, often N > 1050 or 10100), 

which make calculations either complicated or infeasible for standard software. In this paper 

the author proposes a mathematical substitution for mt (an alteration of the model) with the 

following compensations: a smoothing factor of 1/10(n-t) penalizing older observations and an 

nth or (n+1)th root5 of 𝑑𝑚𝑡/𝑑𝑡 to decrease the large numbers: 

𝑐𝑡 =  𝜇𝑡 +  𝜉𝑡 = 𝛽𝑛 + 𝛽0 ∫ √∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖) ∙ 1 10(𝑛−𝑡)⁄

𝑁=𝑛 𝑜𝑟 𝑛+1
𝑑𝑡 + 𝜉𝑡   (7) 

 Both compensations are based on logic of the method without ground research. 

                                                           
4 According to this theorems every polynomial equation with complex coefficients and degree equal to or greater 

than 1, e.g. dmt/dt = 0, has at least one complex root. Fermat’s theorem states that for every stationary point 

mt‘equals zero. The equation of dmt/dt can therefore be written in the described form as a product of α0 and (t–ti), 

where i ranges from 1 to n. 
5 The choice of root depends on which number, n or (n+1), is odd so that negative values of mt can be preserved. 
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Simplification of calculations 

The simplest way to increase precision of calculations of the independent variable 

∫ √∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖) ∙ 1 10(𝑛−𝑡)⁄

𝑁
𝑑𝑡 is to simplify the part ∏ (𝑖=𝑛

𝑖=1 𝑡 − 𝑡𝑖) to the form 𝑎0𝑛𝑡0
𝑛–1

 +

 𝛼1(𝑛 − 1)𝑡1
𝑛−2 + ⋯ + 𝑎𝑛−1  and afterwards derive the antiderivative. The coefficients αi, 

where i ranges from 1 to n – 1, can be calculated using the Vieta’s formulas based on 

elementary symmetric polynomials si:  

αi  =  (−1)isiα0, 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑠1 = ∑ 𝑡𝑗
𝑗=𝑛
𝑗=1 , 𝑠2 = ∑ ∑ 𝑡𝑗𝑡𝑘

𝑘=𝑛
𝑘>𝑗

𝑗=𝑛
𝑗=1 , …, 𝑠𝑛−1 = ∏ 𝑡𝑗

𝑗=𝑛
𝑗=1  (8)7) 

 

2 Modelling cyclical fluctuations of the U.S. GDP 

To empirically verify the described model this paper will use the data for time series of the 

U.S. real gross domestic product (GDP) in two versions: annual (1820–2013), prices of 1990, 

and quarterly (1947Q3–2013Q4), prices of 2009. The data sources are Groningen University, 

Home Maddison database and Maddison Project database (historical data on GDP per capita 

and population) and U.S. Bureau of Economic Analysis (BEA) (population). U.S. National 

Bureau of Economic Research (NBER) complex (multicriterial) definition of the business 

cycle is used to identify stationary points, SP, Peak and Trough (data is published by NBER). 

The cyclical component ct is derived according to formula (2). 

Seasonal adjustment for quarterly data 

The seasonal adjustment for quarterly data had been already performed by BEA with 

the help of X12-ARIMA method, therefore this paper skips this step. 

De-trending for annual and quarterly data 

To increase the quality of results, the author uses 4 de-trending techniques: an 

exponential trend (OLS) 𝑔𝑡 = 𝛽0𝑡𝛽1   log 𝑔𝑡 = log 𝛽0 + 𝛽1log 𝑡  (best fit according to 

analysis of differences, Δyt / yt, R
2 and DW statistics), moving average (MA) (of 3 and 4 

observations for annual and quarterly data), Hodrick-Prescott (HP) filter with parameters  

λ =100 (annual) and λ = 1600 (quarterly) (Hodrick, Prescott, 1997) and Baxter-King (BK) 

filter with frequency limits 2 to 8, k = 3, for annual data and 6 to 32, k = 12, for quarterly data 

(Baxter, King, 1995).6 

Polynomial generation tools correction for big numbers 

 The author uses the GNU Regression, Econometrics and Time-series Library (gretl), 

MS Excel and proper JavaScript code to derive 𝜇t, which is based on Vieta’s formulas. 

                                                           
6 The parameter/ limit values for BK filter were suggested as “standard” by statistical / econometric software. 
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Modeling cyclical component for annual data, 1820–2013 

The annual time series of the U.S. GDP, which consists of 194 observations and is 

most likely the longest break-free time series of GDP in today macroeconomic statistics, has, 

according to NBER, 64 stationary points: 33 peaks and 34 troughs (peaks and troughs 

occurred in the same year are aggregated), the latest being 2007 and 2009. Based on the data, 

the estimation of 𝑑𝑚𝑡/𝑑𝑡 for the U.S. GDP, 𝑑𝑚𝑡/𝑑𝑡̂  , has the following non-simplified form 

before correction7: 

𝑑𝑚𝑡/𝑑𝑡̂ = 𝑎0 ∫ (𝑡 − 35)(𝑡 − 38)(𝑡 − 39)(𝑡 − 41)(𝑡 − 42)(𝑡 − 46)(𝑡 − 48)(𝑡 − 50)(𝑡 −
194

1

51)(𝑡 − 54)(𝑡 − 60)(𝑡 − 63)(𝑡 − 66)(𝑡 − 68)(𝑡 − 69)(𝑡 − 71)(𝑡 − 72)(𝑡 − 74)(𝑡 − 75)(𝑡 −

76)(𝑡 − 78)(𝑡 − 80)(𝑡 − 81)(𝑡 − 83)(𝑡 − 85)(𝑡 − 88)(𝑡 − 89)(𝑡 − 91)(𝑡 − 93)(𝑡 − 94)(𝑡 −

95)(𝑡 − 99)(𝑡 − 100)(𝑡 − 101)(𝑡 − 102)(𝑡 − 104)(𝑡 − 105)(𝑡 − 107)(𝑡 − 108)(𝑡 − 110)(𝑡 −

114)(𝑡 − 118)(𝑡 − 119)(𝑡 − 126)(𝑡 − 129)(𝑡 − 130)(𝑡 − 134)(𝑡 − 135)(𝑡 − 138)(𝑡 −

139)(𝑡 − 141)(𝑡 − 142)(𝑡 − 150)(𝑡 − 151)(𝑡 − 154)(𝑡 − 156)(𝑡 − 161)(𝑡 − 162)(𝑡 −

163)(𝑡 − 171)(𝑡 − 172)(𝑡 − 182)(𝑡 − 188)(𝑡 − 190)  (9) 

The corresponding estimation of independent variable (the integral), designated as Mt, 

is presented in Fig. 1 together with a dummy variable Dt for stationary points, SP.8 

 

Fig. 1: Estimation of independent variable (the integral) for annual data 

 

Source: author 

                                                           
7 The simplified form proved to be too long for this paper. The reader can recur to online simplification tools. 
8 The variable takes two values, 1 for a stationary point and 0 for the rest. 
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      Correlation between Mt, annual U.S. GDP (prices of 1990) and cyclical components 

OLS_C, MA_C, HP_C and BK_C is presented in Tab 1. 

 

Tab. 1: Pearson correlation results for Mt, annual data 

GDP_1990 OLS_C MA_C HP_C BK 

0.1798 -0.1742 0.0616 0.0993 0.0646 

Source: author 

 The results show that Mt is mostly positively correlated with the cyclical components 

derived by other methods with a weak correlation coefficient (this is predictable due to a 

different definition of fluctuations) and shows stronger positive relation to the real U.S. GDP 

than HP_C (0.0406) and and BK_C (0.0252), which is a positive result for a new method. The 

long-term negative fluctuation observed since 1970s is nevertheless puzzling and seems to be 

generated by the polynomial itself. The results can be improved by fully estimating ct using an 

OLS method, see equation 7. 

 

Modeling cyclical component for quarterly data, 1947Q1–2013Q4 

The quarterly time series of the U.S. GDP, which consists of 268 observations is also 

one of the longest break-free time series on GDP with, according to NBER, 22 stationary 

points: 11 peaks and 11 troughs, the latest being 2007Q4 and 2009Q2. Based on the data, the 

estimation of 𝑑𝑚𝑡/𝑑𝑡 for the U.S. GDP, 𝑑𝑚𝑡/𝑑𝑡̂  , has the following non-simplified form 

before correction9: 

𝑑𝑚𝑡/𝑑𝑡̂ = 𝑎0 ∫(𝑡 − 8)(𝑡 − 12)(𝑡 − 26)(𝑡 − 30)(𝑡 − 43)(𝑡 − 46)(𝑡 − 54)(𝑡 − 57)(𝑡 − 92)(𝑡 −

96)(𝑡 − 108)(𝑡 − 113)(𝑡 − 133)(𝑡 − 135)(𝑡 − 139)(𝑡 − 144)(𝑡 − 175)(𝑡 − 177)(𝑡 − 217)(𝑡 −

220)(𝑡 − 244)(𝑡 − 250)  (10) 

The corresponding estimation of independent variable (the integral), also designated as 

Mt, is presented in Fig. 2 together with a similar dummy variable Dt for stationary points, SP. 

 

 

 

 

                                                           
9 The simplified form proved to be too long for this paper as well. 



The 8th International Days of Statistics and Economics, Prague, September 11-13, 2014 

157 
 

Fig. 2: Estimation of independent variable (the integral) for quarterly data 

 

 

Source: author 

 Correlation between Mt, seasonally adjusted quarterly U.S. GDP (prices of 2009) and 

cyclical components OLS_C, MA_C, HP_C and BK_C is presented in Tab 2. 

 

Tab. 2: Pearson correlation results for Mt, quarterly data 

GDP_2009QSA OLS_C MA_C HP_C BK 

0.4248 -0.4198 0.2067 0.0807 -0.0817 

Source: author 

 The results are similar to the ones for the annual data with even stronger correlation 

between Mt and the U.S. GDP, second only to OLS_C (-0.9942) and even stronger when 

compared with MA_C (0.3457), which can be explained, among other, by a greater number of 

observations. Negative fluctuation is also observed only for the recent recession (2008–2009). 

There is however a problem with the smoothing factor, which proved to be insufficient 

leading to large values for 2010s. The results can be improved by fully estimating ct as well. 

 

Some thoughts on quality assessment 

 The author suggests that one of the methods to assess the quality of Mt with regard to a 

specific business cycle definition (the described method serves only this purpose), specifically 
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when large numbers do not allow exact OLS fitting and precise estimates of R2, DW and other 

criteria, is the correlation analysis, mostly correlation between the differences Δct (as 

approximation of first derivatives) derived from different methods and the dummy variables 

for stationary points (SP), peaks (Peak) and troughs (Trough), consult Tab. 3.  

 

Tab. 3: Pearson correlation results for first differences 

  

ct 
Annual Quarterly 

SP Peak Trough SP Peak Trough 

d_OLS_C 0,0794 0,0273 0,0285 0,0756 0,0592 0,0454 

d_MA_C -0,2617 -0,1017 -0,3338 -0,0282 -0,1050 0,0660 

d_HP_C -0,2917 -0,0484 -0,3877 -0,1865 -0,0765 -0,1815 

d_BK_C -0,2561 0,0223 -0,4065 -0,2356 -0,1535 -0,1724 

d_Mt -0.0585 -0.0551   0.0038 -0.0198 0.0299 -0.0578 

Source: author 

From the table it is perceivable that correlation between dummy variables SP, Peak 

and Trough for both annual and quarterly data is mostly inverse and weaker than 0.25 for all 

d_ct (the estimations of Δc) with d_Mt being similar to d_OLS_C and d_MA_C rather than to 

HP and BK filters. Mt is therefore not substantially worse off than the other methods and can 

be used for cyclical fluctuations modeling as well after OLS estimations, which are left out in 

this short paper. 

 

Conclusion 

The method described in this paper derives a polynomial model of the cyclical component in 

time series, ct, from a set of pre-defined stationary points, which can fit the majority of 

business cycle definitions; and consists of deterministic calculations and OLS-fitting that 

under the conditions of homoscedastic and serially uncorrelated errors γt is an optimal 

estimator of ct. The test on the U.S. GDP, annual and quarterly data, for a part of the method 

showed that the method does not produce substantially worse results compared with OLS 

estimations, moving averages, Hodrick-Prescott and Baxter-King filters while being more 

similar to the first two. Certain calibration is nevertheless needed as part of results were 

puzzling and imprecise, as well as corrections for GDP growth and big numbers also require 

robustness checks and may need modifications. The main equation of the method takes the 

following form: 
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𝑐𝑡 = 𝛽𝑛 + 𝛽0 ∫ √∏ (𝑖=𝑛
𝑖=1 𝑡 − 𝑡𝑖) ∙ 1 10(𝑛−𝑡)⁄

𝑛 𝑜𝑟 𝑛+1
𝑑𝑡 + 𝜉𝑡   (11) 

In total, the method represents a certain innovation in polynomial modelling of time 

series and may also be used in theoretical explanations. For example, the residuals γt can be 

examined to assess a business cycle theory’s consistency or, if held a priori valid, to analyze 

impacts of random influences on ct. The author would like to encourage readers to perform 

certain estimations on their own if they find the concept interesting. 
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