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Abstract 

This article will present three classes of time series models: grey model GM(1,1) for short 

time series and two classic models – model of Holt’s exponential smoothing and ARIMA 

model. The purpose of this article is to show the properties of these models for forecasting 

time series with a low number of observations and the possible non-stationarity processes. All 

presented models are a tools for building forecasts. The differences between the models arise 

from econometric assumptions. In addition to the adaptive models is not possible the 

interpretation of the strength of the influence of independing variables. With regard to the 

quality of the forecasts generated models presented in the article may be comparable. In 

practice, in certain situation it is important to use the forecasts, which are built on the basis of 

short past. This may be due to the lack of relevant data. From the point of view of practical 

importance is the level of accuracy of predictions in relation to expectations. Comparative 

analysis of forecasting properties will be carried out on the example of the price of gold.  
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Introduction  

The main goal of this paper is to present some econometric methods aimed at creation of short 

term forecasts. Additionally assumes the existence of a limited information resulting from the 

use of very short time series. This article will be considered three groups of models. The first 

group is a mechanical model of exponential smoothing – model of Holt. The second group 

consits analitical models for very short tmie series (min two observation), which is based on 

the theory of grey information systems. The group wil be presented grey GM(1,1) model and 

its modification rollin GM(1,1) model. The third and last group wil be the classic models of 

time series – ARMA  model. This group represents a model of the time series with a relatively 
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large number of observations. In addition, an important is the issue of the stationarity of the 

process. 

 Prediction process is always accompanied by the uncertainity associated with the 

conduct of the process itself as well as the uncertainity associated with the information 

available to the econometrician. It can therefore be very intuitive two conclusions. First 

econometrician never have all the information about the process – working in conditions of 

limited information (Sroczyńska-Baron, 2013). Secondly it is easy to ask a quastion whether 

the accuracy of forecast costactewd be on the basis of long time series is significantly higher 

than be on the basis a short time series or extremally short time series. Of course, despite the 

fact that the possibility of observing the evolution of the whole process, which is possble only 

for long time series (Bermingham, D'Agostino, 2014). 

 The models presented in the paper will be used to build short term forecasts (one-step-

ahead forecast) for daily quotations in the gold market. In this article the author does not take 

the issue of rules of investments in gold because it is not a purpose of work. 

   

1 Simple Holt’s exponential smoothing 

Holt exponential smoothing is well known and described in the literature in the field of time 

series. Holt’s model belongs to the class of mechanical models which means that it is not 

required to meet the goals related to estimation process. This is due to the fact that such 

models do not have explicit analitical form. In a general sense, adaptive models are expressed 

by the following formula: 

tt uy        (1) 

where: 

ty  - forecasting variable, 

  - unknownf form of trend, 

tu  - error. 

 The article presents a linear model of Holt. The model assumes linearity of the change 

in forecasted variable. This applies to changes in both past and the future periods. Holt’s 

model is given by the following equations (Dittmann, 2003): 

  2211 1   tttt SFyF    (2) 

    2211 1   tttt SFFS    (3) 

  nnt SntFy *      (4) 
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where: 

tF  - trend at the moment t , 

tS  - smoothed value of trend at the moment t , 

  ,   - smothing parameters. It assumes that:   10  , 10   , 

ty  - forecasting variable. 

Fit of the model to the time series and the forecast is conditional of the choice  of the 

smoothing parameters. In theory, it is assumed that the fast-changing trends and rapid changes 

smoothed growth trend correspond to smoothing parameters close or equal to unity. 

Smoothing parameters are determined through simulation whose aim is to minimize any ex 

post error of forecasts. Prediction equation is given by (Dittmann, 2003): 

  nnt SntFy *    (5) 

where: 

nt   - forecast horizon, where  nt  . 

 Holt model is used for the time series with trend and random fluctuations. The 

advantages of the model include: 

 Simplicity of calculations, 

 Ability to conduct a simply simulations, 

 The use of low number of observations (min. 12 observations) 

The weaknesses of model: 

 The possibility of the effect of aging informations, 

 Assumed in advance linearity changes of forecasted variable. 

 

2  Grey information systems and GM(1,1) models 

The theory of grey system information was established in 1982 in China. The theory was 

proposed by Julong Deng. The theory allows the description of the system through the prism 

of the information that is available about him. The theory of grey systems, the informations 

are shared because of the color assigned to them. Hence, the white information is a complete 

set of information about the system while the black information means a complete lack of 

information about the system. Grey information is a part describes the collection system. The 

description of the system in terms of its informal information is described in the conditions of 

uncertainity – in conditions of limited information (Barczak, 2013). The theory suggest the 

possibility of an alternative approach to modelling investigation by trying to accurately 
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describe the reality – the essence of the whitening processes. The main areas of applications 

of the theory of grey information systems are: 

 Grey mathematics, 

 Grey econometric models, 

 Grey incidence and evalutions, 

 Grey models for decisions making, 

 Grey game models. 

 In other words, the theory of grey systems is an alternative to modelling of processes 

in conditions with incoplete informations (Sroczyńska-Baron, 2013). From the point of view 

of econometric methods, grey systems theory proposes the use of class GM(1,1)1 models and 

GM(1,N)2.  These models are estimated to be onthe very short informations vectors. For 

example, the short time series – four realizations of forecasted variable. GM grey class 

models can in some cases be a good forecasting tool. 

 

2.1  GM(1,1) model  

The main equation og GM(1,1) model is given as (Liu & Lin, 2010): 

  

 
  bax

dt

dx
 1

1

    (6) 

where: 

a  - development coefficient, 

b  - grey action quantity coefficient. 

Let            nxxxX 0000 ,,2,1   be a raw vector of forecasting variable. Assume that 

           nxxxX 1111 ,,2,1   is the result of AGO3 operator. Hence, the basic form of 

GM(1,1) model is given as (Liu & Lin, 2010): 

        bkazkx  10     (7) 

where: 

           nzzzZ 1111 ,,2,1   - is the series of adjacent averages from variable  1X , which is 

given as: 

         1
2

1 111  kxkxkz , nk ,,1   (8) 

                                                           
1 GM(1,1) – first order Grey Model with one variable.  
2 GM(1,N) – first order Grey Model with N variable. 
3 AGO –Accumulating Generation Operator – cummulative realizations of forecasting variable. 
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The coefficients of the model (7) can be estimated usung the least squares method: 

  YB'BB'a
1

ˆ  

where: 
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The time response equation is given as (Liu & Lin, 2010): 

     
a

b
e

a

b
XkX ak 








 11ˆ 01 , nk ,,2,1                       (10) 

The theoretical values are obtained from (Liu & Lin, 2010): 

                   aka e
a

b
xekxkxkxkx 









 11ˆ1ˆ1ˆ1ˆ 011110   (11) 

for  nk ,,2,1   

Advanteges of GM(1,1) mode (Barczak, 2013):l: 

 The possibility of modelling a system under the incomplete informations, 

 Applied to the short time series, 

 Apply to build a short-term forecasts, 

 Easy calculations. 

Weaknesses of GM(1,1) model (Barczak, 2013):: 

 Model can be used only for positive realizations of forecasting variable, 

 The problem of recognition of a classical random component, 

 The problem with the conventional approach to the validation process of the model. 

The applicability of GM(1,1) model (Barczak, 2013), (Węgrzyn, 2013): 

 Short time series, 

 Short term forecasts, 

 Smoothing time series. 

 

2.2  Rolling GM(1,1) model – RGM(1,1) 

Rolling model RGM(1,1) is a modification of the classical model GM(1,1). This model can be 

used as a moving model for long time series. This allows to smoothing of the time series with 

the assumed length of the top of the smoothing window. Thus, the basis of the RGM model 
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specification is the choice of the smoothing window width to minimize ex post errors of 

intermadiate forecasts and to minimize the main forecast ex post error.  

 Generally the RGM(1,1) model can be written as: 

 
 

1
0 )1,1(ˆ






t

kti
t GMx        (12) 

where: 

 0x̂  - predicted value at the moment i , 

k   - smoothing parameter – smoothing window width. 

RGM(1,1) model is used in the analysis of long time series. Its advantages and disadvantages 

are the same as the claccic model GM(1,1).  

 

3.  Conventional ARMA model 

The autoregressive moving-average  qpARMA , model is in the form (Tsay, 2010): 

   
 

 
p

i

q

i

itititit yy
1 1

0      (13) 

where: 

t  - is a white noise series, 

p , q  - is non-negative integers. 

Using the back-shift operator, the model can be written as: 

     t

q

qt

p

p BByBB    101 11   (14) 

where: 

pt

p yB   - back-shift operator, 

p

pBB   11  - AR polynomial, 

q

qBB   11  - MA polynomial. 

It is require that there are no common factors between the AR and MA part of the model. It is 

very important that if the all of the solutions of characteristics equations of ARMA model are 

less than 1 in absolute value, the the ARMA model is weakly stationary. If  AR polynomial 

have 1 as a characteristic root, the the model becomes autoregressive moving-average model 

(ARIMA(p,d,q)). In other words this is model of nonstationary process (for example random-

walk process). In that case, it is necesary to use differencing.  

 The one-step-ahead forecast of 1hy   can be written as (Tsay, 2010) : 
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      
 

 
p

i

q

i

ihiihih yy
1 1

1101ˆ      (15) 

where: 

h  - is the origin of forecast. 

For the l -step-ahead forecast, the formula is (Tsay, 2010): 

      
 

 
p

i

q

i

ilhiilhih yly
1 1

0
ˆ      (16) 

The forecast error is given as: 

    lyye hlhh
ˆ                  (17) 

The specification of the ARMA model based on autocorrelation function (ACF) and partial 

autocorrelation function (PACF). A through analysis of the ARMA model requires a reference 

to his three representations. It is very important for the ARMA model to recognize the nature 

of the process due to stationarity. The process should be considered very carefully. 

 

4.  Gold  price forecasting  

 

Consider the daily gold prices per ounce in the period 2014-01-02 to 2014-04-24 (lenght of 

time series:T=88). The prices of gold per ounce are expressed in U.S. dollars. One ounce of 

gold is equal 31,1034768 grams. In practice, an aproximatelly 31,1 gram weight. The unit of 

gold weight is so-called Troy ounce. The name comming from the name of the French town 

of Troyes lying on the Seine.  

   Course of gold prices in the period under consideration shows Figure 1. 

Fig. 1: Gold prices from period 2014-01-02 to 2014-04-24  
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Source: Own work. On the basis of data from www.mennica.com.pl 

As shown in Figure 1 gold price ara time series which are relatively strong random 

fluctuations. The basic descriptive statistics for time series of gold prices is shown in Table 1. 

You will notice that in the period under consideration the price of gold ranged between 1204 

and 1390 $/ounce. From March 20014 recorded a decline in gold prices.  

 To aasess the accuracy of the forecasts used the following ex post errors (Dittmann, 

2013): 

   21
t

m
MSE  ,       (18) 

  MSERMSE         (19) 

    100
1

t

t

ym
MAPE


      (20) 

where: 

m  - number of pairs: (actual value, theoretical value). 

Issues a specification for the presented models. In the case of Holt’s model smoothing 

parameters   and   determined by minimizing the Mean Square Error (MSE). Model fitted 

to the entire length of the time series gold prices. For rolling RGM(1,1) model width of the 

smoothing window is arbitrary equal 4 with one step shift. For GM(1,1) model assumed the 

length of the time series equal 4. A more complex procedure requires the specification of the 

ARMA model. The order of ARMA model set be on the basis of analysis of the 

autocorrelation function - ACF  and partial autocorrelation function - PACF (Fig. 2).  From 

the course of PACF shows that the autoregressive process is in order one. After estimating 

ARM(1,0) model found the nonstationarity process of prices. The delayed was 0,96 and was 

close to one. In the following, was performed Augmented Dickey-Fuller (ADF) test for the 

existance of unit root. ADF statistics is equal -1,64082 with asymptotic p-value equal 0,4616. 

At  the 5% level of significance the null hipothesis was accepted. Ultimately proposed 

ARIMA(1,1,0) integrated model.   

Fig. 2: ACF and PACF for prices of gold  
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 Source: Own work.  

The main results of the analysis are presented in Table 2.  Particularly noteworthy is the 

ARIMA(1,1,0) model. As the Fig. 2 shows the autocorrelation function ACF reduces ARIMA 

form to random walk model. There its therefore a high probability that the forecast results 

obtained using random walk model will be more accurate (Cang & Yu, 2014). From the point 

of view of grey model GM, the forecast can be considered acceptable because the are built on 

the basis of short time series, which features such as purely statistical probability distribution, 

stationarity are not taken into account – incomplete information (Sroczyńska-Baron, 2013). In 

the case of grey models is essential to the choice of smoothing window in rolling model RGM 

and for the basic form of the model GM the leght of the time series.   

 

Tab. 2: The results of the forecasts for the period 2014-04-05 

 

Model 

 

Forecast value 

 

RMSE error 

 

MAPE error 

Holt smoothing 97,0 , 16,0  1281,39 11,7584 0,69% 

RGM(1,1).Window width equal 4 1279,94 13,9687 0,81% 

GM(1,1)Time series T=4 1279,93 1,6482 0,12% 

ARIMA(1,1,0) 1284,90 12,3012 0,68% 

Source:own work 

Conclusion  

You can point to the following conclusions: first the ARMA model is not the right model 

serving predicting gold price or gold returns, second the grey models require more detailed 

specifications or changes in the period of the time series and third an adaptive models can be 

treated in terms of the initial assessment of the level of future gold pricess. Grey models can 

be used to predict the financial indicators (Węgrzyn, 2013). 
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