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Abstract 

This article describes solution of modeling high age mortality tables for the Czech Republic. 

Main problem of high age modeling is the lack of data, especially for small areas such as 

country, region or micro-region. Solution presented in this paper is based on Bayesian 

approach. This approach, combines information from examined area with information from 

surrounding areas (as a prior information). Increase of accuracy of the estimates is examined. 

Results are presented on real data collected from selected countries of the European Union. 
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Introduction 
Models of mortality became a very popular task in disciplines such as demography, 

political sciences, actuarial sciences or economy. For high ages models are in most cases 

formulated in parametric form. Popular models are usually formulated as one dimensional 

regression functions of age (“mortality laws”). As the number of observations does low or 

even not exist at all and hence the growth of mortality in lower ages needs to be extrapolated 

to higher ages. The major problem of modeling mortality for (very) high ages is often 

associated with the lack of observations, especially for small populations. Every population 

has its specifics, but it seems reasonable to find suitable methods to incorporate information 

collected from geographically or economically similar areas. One of the possibilities to apply 

this approach is to use Bayesian approach. In this paper we apply Bayesian general linear 

model to fit the high age mortality data for the Czech Republic. Two different priors, 

informative and non-informative, are tested and compared. The informative prior is based on 

empirical Bayesian methodology using the information collected from the so called “Visegrad 

four” (V4) countries. These countries could be assumed reasonably close to the Czech 

Republic in economical and in geographical way. Non-informative prior is used in situations 

where no external or other prior information is available and usually  some flat prior, e.g. 
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uniform or normal distribution with (very) high variability, is assumed. The results based on 

non-informative prior are almost identical as results computed using classical (frequentist) 

GLM methodology. 

 

1 Laws of mortality 
Over the history, many parametric functions were suggested based on variety of 

assumptions. First models were not always specified only for very high ages and not 

specifically for extrapolation but rather to describe the growth of mortality with age 

('mortality law'). Benjamin Gompertz (see (Gompertz, 1825)) assumed exponential increase 

of the force of mortality with increasing age. Later on exponential increase was questioned 

and other models were developed. One of the most popular alternatives to the exponential 

models are models based on logistic function. Such specification occurs for example in 

Beard's model (see (Beard, 1959)), Thatcher's model (see (Thatcher, 1999)) or in Kannisto's 

model (see (Thatcher et al., 1998)). An overview of other specifications is provided in 

(Burcin, Tesarkova, and Sidlo, 2010) or in (Pitacco et al., 2009).  

In this article we focus purely on the logistic specification as it is presently one of the 

most popular models. It is also used for data extrapolating by one of the most popular world 

wide data source, the Human mortality database (Wilmoth et al., 2012).  

2 Model and assumptions 
The logistic specification of the dependence of the force of mortality on age is defined 

as  
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where )(xm denotes the force of mortality, x  is the age, 0x  is the high age threshold and j

are the parameters. Formula (1) can also be written as 
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Therefore this regression model is normally treated as a member of the broad class of 

generalized linear models. It is then assumed, that the number of deaths xD   has binomial 

distribution, i.e. 

 
)),(),((~)( xmxEBixD  (2) 
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where )(xE is the exposure. Maximum likelihood method is commonly used to estimate the 
parameters j  in the classical analysis.  

The main focus of this article is to incorporate data from surrounding V4 countries as 

a prior information into the analysis. Hence the application of empirical Bayesian approach 

seems to be reasonable. Namely we use an informative prior distribution in the form of 

independent normal distributions  

 
),,(~ jjj N   for 2,1j  (3) 

where j and j  are parameters estimated using classical GLM method on the data collected 

from the surrounding “V4” countries for fitting informative prior. Normal distribution with 

variability set 100 times higher than in the informative case was used as the non-informative 

prior.  

The most important criticism of the Bayessian approach is the subjectivity of the 

selected prior distribution. Note the using the empirical Bayesian approach, this problem was 

largely avoided. The other point of criticism of this approach is its computation cost during 

calculation of posterior densities of coefficients j . In most cases is not possible to express 

the posterior density analytically and simulations are necessary. The posterior densities 

 XH 2;  of the coefficients in the model were computed using the Bayesian formula 

     222 ;;;
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(
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where the prior density  2;P  is multiplied by the likelihood  2;XF  calculated on the 

dataset X. Likelihood in the model express the probability of prior information under 

condition of the observed dataset in the area that we are interested in.  

Posterior densities in this article were estimated in R using iterative Markov chain 

Monte Carlo sampling methods. Details of the use Gibbs sampler for simulating posterior 

densities are described e.g. in (Koop(2003)).  

 

4. Data used in the analysis 
Data including number of deaths and exposure to risk have a period character and are 

collected for ‘Visegrad four’ countries (Czech Republic, Slovakia, Hungary and Poland). The 

data are selected for the years 2004-2009 in ages from 80 to 100 year olds. Data are displayed 

in the appendix. Data comes from two sources providing detailed mortality and population 

data sets. Specifically the Demography section in Eurostat database and The Human Mortality 
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Database (HMD). Methods of calculation exposure to risk and missing death counts are 

presented in (Wilmoth, et al., 2012). 

 

4. Results 
Calculations presented in this article were performed using the package Data Analysis 

Using Regression and Multilevel/Hierarchical Models (arm) in statistical freeware R. See the 

documentation Gelman et al. (2015) for details. As stated above, two different priors were 

assumed. Firstly informative prior distributions were assumed for both parameters 0  and 1 . 

These informative prior distributions were fitted based on the data collected from the 

surrounding V4 countries. Posterior distributions were then calculated using the Czech data. 

The results are presented in Table 1, which contains both the prior estimates as well as the 

posterior estimates. The corresponding densities are displayed in Figure 1.  

It is obvious that the prior information influences the posterior densities and estimates. 

The influence of the prior distribution may be measured by comparing the results to the 

results obtained using only limited prior information, i.e. similar to the situation where no 

prior data or knowledge is available. The non-informative priors assumed here were again 

normal distributions with the same prior mean j  as in the case of the informative prior. This 

time, however, the prior standard deviation j  was multiplied by 100. The results are also 

displayed in table Table 1 and in Figure 2.  

 

Tab. 1: Comparison of prior and posterior densities of parameters 

 Prior Posterior 

 Coefficients Exp. value Stdev. Exp. value Stdev. 

Informative 
0  -11,181 0,01978 -11,880 0,01335 

1  0,115 0,00023 0,1175 0,00015 

Non-
informative 

0  -11,181 1,9779 -12,9300 0,04384 

1  0,115 0,02312 0,1299 0,00051 

Source: Authors  ́computation in R 
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Fig. 1: Informative prior and posterior densities of coefficient 0 and 1  

 
Source: Authors  ́computation in R 

Fig. 2: Non-informative Prior and Posterior densities of coefficient 0 and 1  

 
Source: Authors  ́computation in R 

The comparison of prior and posterior densities of parameters in Figure 1 and Figure 2 

presents how much observed data influenced the prior, or the other way around, how much 

the prior data influenced the estimate based purely on Czech data. 

The credible intervals for both 0  and 1  parameters, and decreased by approximately 

42 %. The comparison of the prior data, prior fit, Czech data, classical fit and Bayesian fit is 

displayed in Figure 3. 
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Fig. 3: Fitted data using empirical Bayesian methodology with informative and non-

informative prior 

                                Informative prior                                                        Non-informative prior   

  
Source: Authors  ́computation in R 

Extrapolation to the age 101 – 105 years based on the Bayesian fit is displayed 

together with the credible intervals based on posterior densities of parameters in Figure 4. 

Fig. 4: Extrapolation to the age of 101 – 105 years with credible intervals using 

informative and non-informative prior 

                                   Informative prior                                                          Non-informative prior 

 
Source: Authors  ́computation in R 

Conclusions 
Bayesian methods are a natural way to overcome the problem with lack of data, hence 

it is reasonable to apply these methods in the field of high age mortality models. On one hand, 

demographic models are typically set up on the country level. On the other hand, high age 
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data will always be scarce in small areas and it is obvious that areas reasonably similar (both 

geographically, as well as economically) will also have similar mortalities. Therefore it is 

natural to base the country level estimates not only on the country of interest data but also on 

the data collected in the surrounding areas. As can be seen from the results displayed above, 

the final empirical Bayesian model is then “somewhere between” the classical model based 

purely on the Czech data and the classical model based purely on the data from the other V4 

countries. The decrease of the variability between prior and posterior parameter distribution is 

rather high. Predictions are based on much more information available for the estimates. 

As the empirical Bayesian approach was applied, i.e. the prior distributions were fitted 

based on observed data, the subjectivity in selecting priors was only limited to the choice of 

the distribution family, in this case normal family, and on the choice of the prior data, but not 

on the parameters of the priors itself. 
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Appendix 
Tab. 2: Count of Deaths 2004-2009 

Age Czech Republic Hungary Poland Slovakia 

80 23232 25990 72791 10853 
81 23971 26659 72698 11165 
82 24997 26969 72159 11275 

83 24974 26414 69586 11113 

84 23806 25855 66349 10649 

85 21388 22992 59810 9480 
86 18335 19932 52359 8015 
87 15198 16686 44908 6460 

88 12108 13547 38008 4983 

89 10387 11800 34034 4321 

90 9358 10202 30274 3835 
91 8895 9343 27866 3504 
92 8122 8773 25174 3160 

93 7124 7608 22456 2825 

94 5894 6335 18904 2336 

95 4471 4773 14838 1724 
96 3112 3531 10999 1306 
97 2080 2332 7724 862 

98 1318 1487 5330 575 

99 778 983 3509 357 

100 509 619 2090 204 
Source: The Human Mortality Database and Eurostat 

Tab. 3: Exposure to Risk 2004-2009 

Age Czech Republic Hungary Poland Slovakia 
80 318401 326513 1049434 129173 

81 293541 299771 946233 118381 
82 266779 273232 838981 107349 

83 237204 245554 730862 94917 
84 203253 215758 620716 81899 

85 164050 181097 507028 67278 

86 125092 144158 399696 51536 
87 92811 111137 309254 38344 

88 68157 84718 240667 28375 
89 52070 66184 191638 22116 

90 41814 52164 154545 17589 

91 34952 42322 127913 14287 
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Age Czech Republic Hungary Poland Slovakia 
92 29353 35293 106445 12023 

93 23431 28264 85471 9660 
94 17734 21603 65832 7390 

95 12365 15248 47723 5233 

96 8030 10007 32907 3431 
97 5034 6288 21900 2151 

98 3076 3829 13994 1325 
99 1826 2295 8719 790 

100 1041 1326 5368 453 
Source: The Human Mortality Database and Eurostat 
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