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USING HIGH-FREQUENCY POWER-VARIATION 
ESTIMATORS IN THE BAYESIAN ESTIMATION OF 

STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODELS 

Milan Fičura – Jiří Witzany   

 

Abstract 

Power-variation estimators calculated from high-frequency returns are now widely used for the 

non-parametric estimation of volatility and jumps in the financial time-series. The paper presents 

a new methodology of how to utilize these estimators in the Bayesian estimation (using a 

complex MCMC algorithm) of the parameters and latent state variables of a Stochastic-Volatility 

Jump-Diffusion (SVJD) model with self-exciting jumps. Two newly developed models are 

presented: the SVJD-RV model using the realized variance and the SVJD-RV-Z model using in 

addition to that the Z statistics (used often for the non-parametric jump identification). The 

models are applied to the past history of the EUR/USD time series. The results indicate superior 

properties of the new models especially in their ability to model jump clustering when compared 

to the standard SVJD model (i.e. not utilizing the power-variation estimators). The strongest 

clustering effects were found by the SVJD-RV-Z model. 

Key words:  Stochastic volatility, Self-Exciting jumps, Realized volatility, Power-variation 

estimators, Bayesian inference 
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Introduction 
The ability to accurately model and forecast volatility and jumps in the financial time series is of 

primary importance in many areas of finance such as option pricing, portfolio construction, risk 

premium modelling, VaR estimation or quantitative trading. In the last two decades there 

occurred two breakthroughs in the field of volatility and jumps modelling resulting in two highly 

successful and intriguing classes of models. The first are the Stochastic-Volatility Jump-

Diffusion (SVJD) models, modelling volatility and jumps as latent processes, and the second are 

the realized variance (RV) models utilizing high-frequency returns and the asymptotic theory of 

power-variations. The purpose of this paper is to show how these two classes of models could be 

combined in order to model volatility and jumps more efficiently. 
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In the SVJD models the volatility and jumps are modelled as latent (unobservable) processes 

whose values have to be estimated as latent state variables. This is relatively difficult, but 

manageable through the use of Bayesian simulation techniques such as MCMC sampling (first 

proposed by Jacquier et al., 1994). In the recent years, with the increase of the computational 

power and the development of more advance estimation algorithms (MCMC, EMM and Particle 

filters, etc.) the SVJD models surged in popularity and started to include more advanced features 

such as jumps in volatility (Eraker et. al 2003), correlations between the markets (Witzany 2013) 

or self-exciting jumps (Fulop, Li and Yu, 2015). 

The second class of volatility models (i.e. the realized volatility models) utilize high-frequency 

returns and the asymptotic theory of power variations in order to construct non-parametric 

estimators of the latent volatility and jumps, thus enabling their direct modelling through 

traditional time series models (for example ARFIMA). The name of the class comes from the first 

of these estimators, the realized variance (RV), proposed by Andersen et. al (1998). RV is 

defined for a given frequency as the sum of the squared returns on some higher frequency and it 

should asymptotically converge to the quadratic variation of the underlying price process. In 

order to estimate the continuous stochastic variance it is necessary to construct an estimator 

converging to the continuous component of the quadratic variance which is true for the bipower 

variation (Barndorff-Nielsen and Shephard, 2004). The statistically significant jumps can then be 

estimated by normalizing the differences between the realized variance and bipower variation 

through the integrated quarticity, as was done by Andersen et al (2007) to construct the so called 

Z variable for jump identification. 

Considering the combination of SVJD models with the realized variance models, it has been 

pursued in the past (Takahashi et al. 2009) but to our knowledge only for the models without 

jumps (i.e. SV models, not SVJD). As the jumps play an important role in the financial time-

series dynamics, we present a methodology of how to extend the previous SV-RV models to 

incorporate jumps (SVJD-RV model) as well as to utilize the information from the Z statistics 

(SVJD-RV-Z model). The application is performed on a 17 year history of the EUR/USD time 

series and it is shown that the new models possess superior properties. 

The paper is organized as follows. In the first chapter the non-parametric power-variation 

estimators are described. In the next section the SVJD-RV and SVJD-RV-Z models are 

presented, as well as the MCMC estimation procedure. In the fourth chapter the application of the 

models to the EUR/USD time series is performed and the results are compared with benchmarks 

(SVJD and the purely nonparametric estimates). In the conclusion the results are summed up and 

further areas of research are proposed. 
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1 Power-variation estimators of volatility and jumps 
One of the advantages of the power-variation estimators of volatility and jumps is that they are 

non-parametric and model-free, meaning that they are theoretically valid for a wide range of asset 

price processes. For the purpose of exposition there is further assumed that the logarithmic asset 

price follows the following generally defined stochastic process: 

           tdqtj+tdWtσ+dttμ=tdp , (1) 

where  tp  is the logarithm of the asset price,  tμ  is the instantaneous drift rate,  tσ  is the 

instantaneous volatility,  tW  is a Wiener process,  tj  is a process determining the jump sizes 

and  tq  is a counting process determining the time of jump occurrences. 

Omitting the variability of the stochastic drift rate  tμ , it is possible to express the quadratic 

variation of the price process over the period between 1t  and t  as follows: 

     sκ+dssσ=tQV
t<st

t

t

 ≤1

2

1

2 , (2) 

where       1=tqItj=tκ  and  .I  is the indicator function. So the quadratic variation, 

measuring the overall variability of the price process during a given period of time, consists of 

two components. The first term in (2), called Integrated Variance, corresponds to the continuous 

variability of the price process, while second term, called Jump Variance, corresponds to the 

discontinuous variability (i.e. to the impact of jumps). So we can write: 

     tJV+tIV=tQV , (3) 

where  tIV  is the integrated variance and  tJV  is the jump variance. 

The quadratic variation and its components are directly unobservable and have to be estimated. 

The most widely used power-variation estimator of quadratic variation is the realized variance 

(Andersen and Bollerslev 1998).  

Denoting  t,r  as the logarithmic return between t  and t , we can define RV: 

   



/1

1

2 1
=j

,j+tr=t,RV , (4) 

and it holds that    tQVt,RV →  as 0→ . 

The realized variance is theoretically an unbiased and consistent estimator of the quadratic 

variance of the underlying process. Nevertheless in real-life applications the   may not go 

sufficiently close to zero as the microstructure-noise effects present on ultra-high frequencies 

may cause the estimator to be biased. Therefore we use the 15-minute frequency. 
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Next it is necessary to decompose the quadratic variation into the integrated variance and jump 

variance. For this purpose a wide range of non-parametric estimators converging to the integrated 

variance has been constructed, the most well-known is the bipower variation (Barndorff-Nielsen 

and Shephard 2004). It is defined as follows: 

        



/1

2
111

2 =j
,j+tr,j+trπ=t,BV , (5) 

and it holds that    tIVt,BV →  as 0→  

Finally, the jump variance could theoretically be estimated as the difference between realized 

variance and bipower variation. This would be however a very inaccurate approach due to the 

finiteness of the sampling frequency in the calculation of  t,RV  and  t,BV  which causes the 

resulting  tJV  estimates be very noisy, indicating jumps on almost every day and sometimes 

acquiring even negative values which is for the real  tJV  variable impossible. 

In order to accurately estimate the statistically significant jumps even in the presence of noise it is 

necessary to normalize the differences between realized variance and bipower variation by using 

the integrated quarticity:    


t

t

dssσ=tIQ
1

4 , which can be consistently estimated (even in the 

presence of jumps) through the realized tri-power quarticity: 
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,j+tr,j+tr,j+trΓπ=t,TQ , (6) 

as it holds that    tIQt,TQ →  as 0→ . 

By using  t,RV ,  t,BV  and  t,TQ , it is possible to define the variable  t,Z  (see 

Andersen et. al 2007), following a standard normal distribution as long as the underlying process 

does not contain any jumps: 

        
       1,52/ 22
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t,BVt,TVmaxπ+π
t,RVt,BVt,RV=t,Z . (7) 

Large values of  t,Z  are indicating that a possible jump occurred during the given time period. 

The statistically significant jumps can be estimated by using the appropriate quantiles: 

             t,BVt,RVαΦ>t,ZI=t,EJV 1 , (8) 

where  t,EJV  is the estimated jump variance, .I  is the indicator function and   1αΦ  is the 

quantile function of the standard normal distribution.  
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2 The SVJD model using power-variation estimators 
For the sake of brevity only a discretized version of our SVJD models will be presented. The 

discretization was performed by the Eulers method with the assumption that at most one jump 

can happen during any given time period t, which will in our case correspond to one day. 

The model assumes that the logarithmic returns of the asset follow equation: 

         tQtJ+tεtσ+μ=tr , (9) 

where  tr  is the daily logarithmic return defined as      1 tptp=tr , where  tp is the 

logarithm of the closing price, μ  is the mean daily return,  tσ  is the stochastic volatility, 

   0,1~ Ntε  is a standard normal white noise,    JJ σ,μNtJ ~  corresponds to the jump sizes 

and     tλBerntQ ~  is a Bernoulli distributed jump indicator with intensity  tλ . 

The variance will be modelled through the log-variance model. So we denote    tσ=tV 2  and 

   )log( tV=th  and the variable  th  follows an AR(1) process: 

     tγε+tβh+α=th V1 , (10) 

where  th  is the logarithm of the conditional variance,  θβ=α 1  is the constant, θ is the long-

term log-variance, β  is the autoregressive coefficient, γ  is the volatility of the log-variance and 

   0,1~ NtεV  is a standard normal white noise, which is in our case uncorrelated with  tε , as 

the model will be applied to the currency market. 

The dynamics of the jump component is modelled using the self-exciting Hawkes process, in 

which the jump intensity, defined as     tλ==tQPr 1 , follows the following process: 

     11  tQγ+tλβ+α=tλ JJJ , (11) 

where  tλ  is the jump intensity at day t ,   JJJ θβ=α 1  is the constant, Jθ  is the long-term 

jump intensity, Jβ  is the rate of the exponential decay of the intensity towards Jθ  and Jγ  is the 

self-exciting parameter representing the increase in intensity after a jump occurrence. 

The equations 9, 10 and 11 represent a standard SVJD model with self-exciting jumps. In order to 

incorporate the realized variance into the model the following relationship is used: 

   )()()()(log 2 tthtQtJtRV RV . (12) 
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So the model assumes that the logarithm of the realized variance, adjusted for the influence of the 

jump component, represents unbiased estimate of the underlying log-variance  th , it is however 

plagued by certain noise    RV0,~ NtεRV  with volatility RV . 

The above equations represent the SVJD-RV model. In the full SVJD-RV-Z model there will be 

one additional equation corresponding to the  t,Z  variable. Although it is possible to infer 

jump probabilities directly from  t,Z , using the standard normal cumulative distribution 

function, these are generally too high in order to be directly utilized in a SVJD model. Indeed in 

our dataset the mean value of the  t,Z  is 1.127 and the mean jump probability 72.92%. This is 

caused by the existence of a very large number of small jumps, which occur commonly on the 

ultra-high frequencies, but do not influence the size of the returns on the daily frequency enough 

in order to be distinguishable from the continuous daily volatility (for further discussion see 

Fičura and Witzany, 2014). 

As we want to focus on the large jumps (visible on the daily frequency), we will utilize the 

intuitive notion that the large jumps tend to increase the size of  t,Z  more than the small 

jumps. So although its values tend to be larger than zero on almost every day, when large jumps 

happen they should be even larger. This is captured by the following model:  

ZZZ tQtZ   )()( , (13) 

where Z  is the mean value of the )(tZ  variable on regular days, containing either no jumps or 

only small jumps (unobservable on the daily frequency), Z  is the increase in the mean value of 

the variable on the days when large jumps happen and ),0(~ ZZ N   is the noise of the )(tZ  

variable with standard deviation not necessarily equal to one (due to the jumps). 

So the full model has altogether 12 parameters: ZZZRVJJJJJ σ,μ,γ,β,θγ,β,α,μ,  ,,,,  and 

three vectors of latent state variables (V, J and Q) to be estimated. 

The estimation is performed using a MCMC algorithm composed of a Gibbs Sampler, Random-

Walk Metropolis-Hastings and Independence-Sampling Metropolis-Hastings. Denoting the 

vector of all the parameters and latent state variables of the model as  kθ,…,θ=Θ 1 , the MCMC 

algorithm allows us to sample from the Bayesian joint posterior density  dataΘp | , by 

constructing a Markov Chain that uses only the information about the conditional densities 

 dataj,i,θθp ij ≠| . The chain is then guarantied (as long as certain conditions are met) to 

asymptotically converge to the density  dataΘp | . 
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More about the construction of the MCMC algorithm can be found in Witzany (2013). It is based 

on the results in Jacquier et al. (2007) and Johannes and Polson (2009). For the sake of brevity 

we report only the final version of the algorithm. It proceeds as follows: 

1. Sample initial values                            00000000000000, ,,,, ZZZRVJJ μ,QJ,V,γ,β,α,σ,μ,λ,μ  . 

2. For T,…=i 1,  sample jump sizes       11∝  g
J

g
J

g
i σ,μJ;φJ  if   01 =Q g

i
 using Gibbs 

Sampler, or                    111-g1211 log∝
  g

J
g

JRV
g

ii
g

i
g

i
g

i σ,μJ;φ,h;JRVφVJ,+μ;rφJ   if 

  11 =Q g
i

 , using Random-Walk Metropolis-Hastings. 

3. For T,…=i 1,  sample jump occurrences    0,1∈
g

iQ ,    101 /1 p+pp==QPr , where: 

                   11-g1-g1-g111
0 1log   g

ZZiRV
g

ii
g

i
g

i λ,;Zφ,h;RVφV,μ;rφ=p  , 

                      11-g1-g1-g1-g1211
1 log   g

ZZZiRV
g

i
g

ii
g

i
g

i λ,;Zφ,h;JRVφVJ,+μ;rφ=p  . 

4. Sample new stochastic variances  g
iV  for T,…=i 1,  using Independence-Sampling 

Metropolis-Hastings with proposal density derived based on Jacquier et al. (1994): 

         22 0.50.5exp10.5,| iiiiiii QJμr+σ+μ+;VIG=QJ,r,Θ,,VVq    where 

 
 2

2

exp1
2exp1

σ
σ=


 ,       

  222
11

22

1
loglog1log

RV

i+iRVi
i β+

V+Vβ+βαEIV
=μ





  , 

  222 1 RV

RV

β+
γ=σ






. 

5. Sample new stochastic volatility AR(1) coefficients      ggg γ,β,α  from   g
ii V=h log  for 

T,…=i 1,  using the Bayesian linear regression model (Lynch, 2007):   XyXX'=β 1 , 

Xβy=e  , where '

Th…h

…=X









11

11 , and sample    






 
22

2
∝

2 ee,nIGγ
'

g  and 

            12
∝

XX'γβ,;βα,φβ,α g''gg . 

6. Sample  gμ  based on the normally distributed time series    g
i

g
ii QJr   with variances 

 g
iV :         
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7. Sample JJJ γ,β,θ  using Random-Walk Metropolis-Hastings with the proposal density 

 cNg
J

g
J 0,)1()(    (for Jθ )  and likelihood:      

T

=i

iQ
i

iQ
iJJJ

g λλ=γ,β,θQL
1

11| . 

8. Sample  g
RV  using the density:        
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9. Sample      ggg ,, ZZZμ   using normally distributed series    1 g
Z

g
ii QZ  , with variance  1-g

Z  

to sample  g
Zμ , series     g

Zi
g

i μZQ  , where   1g
iQ , with variance  1-g

Z  to sample  g
Z , 

and the centralized series      g
Z

g
i

g
Zi QμZ   to sample  g

Z . 

10. Sample    g
J

g
J σ,μ  based on the normally distributed series  gJ  and uninformative priors 

  1∝μp  and   1∝log 2σp , which is equivalent to   22 /1∝ σσp , i.e. sample: 
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2 Application of the SVJD-RV and SVJD-RV-Z models 
The models were applied to the time series of the EUR/USD exchange rate in the period between 

1.11.1999 and 10.10.2014, containing 3884 trading days and 369533 15-minute returns which 

were used for the calculation of the power-variation estimators. The intraday data were provided 

by ForexHistoryDatabase.com and the time corresponds to UTC+2. 

Three SVJD models were estimated and will be compared, standard SVJD model using daily 

returns, SVJD-RV model, using in addition to the daily returns also the realized variance, and the 

SVJD-RV-Z model utilizing also the Z variable. The MCMC estimation algorithm was 

implemented in Matlab. The parameters exhibited good convergence. 3000 MCMC iterations for 

every model were calculated out of which the first 1000 were discarded and the remaining 2000 

were used for parameter estimation based on the posterior means. In addition to that Bayesian 

standard errors were calculated. The parameter estimates are summed up in Table 1. 

 

Tab. 1 – The posterior means and Bayesian standard errors of model parameters 

m mJ sigmaJ alpha beta gamma thetaJ betaJ gammaJ sigmaRV 

SVJD 7.9E-05 1.4E-04 0.0075 -0.0473 0.9955 0.0676 0.0491 0.3782 0.0468 
8.1E-05 0.0016 0.0008 0.0189 0.0018 0.0065 0.0180 0.2473 0.0272 

SVJD-RV 8.8E-05 0.0003 0.0113 -0.0534 0.9948 0.0654 0.0071 0.4205 0.0556 0.4910 
6.1E-05 0.0038 0.0018 0.0194 0.0019 0.0054 0.0028 0.2392 0.0273 0.0092 

SVJD-RV-Z 0.0001 0.0003 0.0051 -0.0574 0.9945 0.0740 0.0483 0.6854 0.0158 0.5039 
6.0E-05 0.0005 0.0004 0.0215 0.0021 0.0085 0.0071 0.2860 0.0105 0.0087 

Source: Authorial computation 

The upper values in the cells represent the parameter estimates and the bottom values are the 

Bayesian standard errors. From the results it is apparent that the stochastic variance follows a 
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highly persistent process (beta close to one for all of the models), although a stationary one (beta 

less than 2 standard deviations away from one). 

The long-term jump intensity (thetaJ) is lowest for the SVJD-RV model which has also the 

largest average mean jump magnitude (sigmaJ). For the other two models the values of thetaJ are 

similar, but the SVJD model has a larger value of sigmaJ, indicating larger jumps. Considering 

the jump clustering, the jump intensity is most persistent (highest betaJ) in the case of the SVJD-

RV-Z model. This model has also the lowest value of gammaJ. 

Further analyses showed that the Bayesian mean estimates may potentially underestimate the 

extent to which jump clustering occurs as the posterior distributions of betaJ and gammaJ are 

highly asymmetric. Therefore the Bayesian mode may pose a better estimate. Figure 1 shows the 

bivariate marginal posterior density of betaJ and gammaJ for two of our models. 

 

Fig. 1 – Posterior densities of betaJ and gammaJ for SVJD-RV and SVJD-RV-Z 

 
Source: Authorial computation 

The posterior densities give a much clearer picture about the nature of the jump clustering in the 

time series. It is apparent that for SVJD-RV-Z the clustering is very strong and persistent as the 

mode of betaJ is very close to one. For SVJD-RV the clustering is only short lived, manifesting 

itself in a significantly increased jump probability in the day immediately following a jump 

occurrence, but not so much in the days afterwards. 

The SVJD-RV-Z model has three additional parameters. They are reported in Table 2. 

 

Tab. 2 – Additional parameters of the SVJD-RV-Z model 

  mZ ksiZ sigmaZ 

SVJD-RV-Z 0.9510 3.7059 1.2544 
0.0254 0.1579 0.0202 
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Source: Authorial computation 

From the parameters in Table 2 we can see that the average value of the Z variable on the days 

with no jumps or small jumps, is 0.95, while on the days with large jumps it is about 3.7 higher. 

The sigmaZ parameter appears to be significantly larger than one (i.e no jump case). 

Considering the latent state variables we do not report the stochastic variance estimates in order 

to save place. Nevertheless from the analyses of the ability of the models to fit the non-

parametrically estimated integrated variance, the SVJD-RV-Z model achieved a better fit then the 

other two models and its estimates were also the least biased. 

We further focus on the analysis of the jump component. Figure 2 shows the Bayesian 

probabilities of jump occurrence based on the models as well as the non-parametric estimates. 

 

Fig. 2 – Bayesian probabilities of jump occurrence based on different models 

   
Source: Authorial computation 

It is apparent that all of the SVJD models identify far less jumps in the time series than the non-

parametric approach. This is due to the fact that the Z variable finds even the small jumps 

occurring on the ultra-high frequencies, which are often undistinguishable on the daily frequency. 

From the SVJD models, the SVJD-RV model tends to identify less jumps than the standard 

model, but the several ones it found have a relatively large probability of occurrence. The SVJD-

RV-Z model does, on the other hand, identify significantly more jumps than the other two models 

and with greater probabilities of occurrence.  

From the charts it is not possible to say which estimates of jumps are the “best” ones. 

Nevertheless, considering the clustering effects in the jump time series identified by the SVJD-
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RV and SVJD-RV-Z models, it seems that there exists some underlying dynamics in the jump 

component that may play important role in applications such as volatility forecasting and option 

pricing. So the models pose a promising area for future research. 

Conclusion 
Methodology was presented of how to utilize the high-frequency power-variation estimators of 

volatility and jumps in the Bayesian estimation (through MCMC sampling) of SVJD models with 

self-exciting jumps. The newly developed models utilize the realized variance (SVJD-RV model) 

and the Z statistics (SVJD-RV-Z) in order to gain more information about the latent states of 

stochastic volatility, jump occurrences and jump sizes. Based on the results, the models compare 

favourably to the standard SVJD model as well as to the non-parametric methods of volatility and 

jump estimation. The main benefits of the models seem to be in their ability to identify large 

jumps and to model their dynamics. Significant evidence for jump clustering was found, 

especially by the SVJD-RV-Z model. 

The usefulness of the new models will manifest itself mainly in financial applications such as 

volatility forecasting, VaR estimation and option pricing. For this purpose it would be necessary 

to construct out-of-cample forecasts, for example through particle filters which is one of the areas 

of our future research. In addition to that it would be interesting to extend the models to include 

additional features such as jumps in volatility. Considering the utilization of the power-variation 

estimators, a constant may be introduced in the modelling of the realized variance in order to 

tackle the possible bias due to the microstructure noise effects. Additionally other power-

variation estimators may be included into the SVJD models in order to utilize their individual 

benefits or to find out which ones are best suited for applications. 
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