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Abstract 

With the widely used algorithms based on fuzzy logic, fuzzy clustering is attracting increasing 

attention. Nowadays there are many fuzzy clustering algorithms. One of their fundamental 

problems is to determine the optimal number of clusters, which has a deterministic effect on the 

clustering results. We can determine the optimal number of clusters with help of cluster validity 

indices. Cluster validity indices are used for estimating the quality of partitions produced by 

clustering algorithms and for determining the number of clusters in data. 

In this paper, factors determining the number of clusters in the existing fuzzy clustering 

are researched and their advantages and disadvantages are examined. The important task is to 

estimate the proper number of clusters in actual dataset. This paper describes a new validity 

index for fuzzy clustering (modified index E) and modifications improving its performance as 

cluster number selection criterion for fuzzy k-means. The proposed indexes are tested and 

validated using several data sets. The paper also presents experimental results concerning them. 
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Introduction  
Clustering has become a widely accepted synonym of a broad array of activities of exploratory 

data analysis and model development in science, engineering, life sciences, business and 

economics, defense, and biological and medical disciplines (J. Valente de Oliveira, 2007). 

Clustering techniques can be used to organize data (numerical or categorical or a mixture of 

both) into groups based on similarities among the individual data items. In other words, 

clustering techniques is a tool for discovering previously hidden structure in a set. 

Like all clustering algorithms, also the fuzzy clustering algorithms are endowed with a 

distance function, which measures the dissimilarity in data, or with a special function, which is 

determined to measure their similarity. But there is a significant difference from the classical 

hard clustering algorithm. In the classical hard clustering, each data point xi in the dataset of size 

n,  nxxX ,...,1  belongs to a single of k clusters. In the case of the fuzzy clustering, every data 

point xi in the dataset X is assigned to all clusters, but with different membership degrees. This 
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membership degree expresses how ambiguously or definitely a data point should belong to a 

cluster (F. Höppner et al., 1999). 

The concept of these membership degrees is substantiated by the definition of fuzzy sets 

by L. A. Zadeh (1965): Let X is a space of points, with a generic element of X denoted by x; thus

 Х х . A fuzzy set A in X is characterized by a membership function fA(x) which associates 

with each point in X a real number in the interval 0, 1; the value of fA(x) at x represents the 

“grade of membership” of x in A. Thus, the closer the value of fA(x) is to one, the greater the 

degree of membership of x to A (Xie, N., 2011). A fundamental problem of this approach to 

clustering is to determine the best number of clusters, which has a deterministic effect on the 

clustering results (T. Löster, 2012).  

 

1. Cluster validity indexes, their advantages and disadvantages 
Clustering validity is a concept to evaluate how good clustering results are. There are many 

cluster validity indexes that have been proposed in the literature for evaluating fuzzy and other 

clustering techniques. In this paper we will research some of these indexes, their pros and cons. 

The basic validity index associated with the fuzzy clustering is Dunn’s coefficient defined by 

                                                                        2
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Here uij 0, 1 are the membership degrees of objects to clusters. This index assumes only the 

compactness measurement for each cluster and for the data structure. It is obviously a lack 

connection with the geometrical structure of data1. According to the theory of fuzzy sets, the sum 

of memberships of every object to all clusters is 1. Consequently, with the increasing number of 

clusters, the single degrees of cluster membership have a decreasing value. Squaring the 

membership’s degrees we obtain even smaller values. So, with the increasing number of clusters 

the value of this coefficient is decreasing (S. Brodowski, 2011). 

The next validity index was proposed by Dave as a modification of the previous one, 
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This index can take values 0, 1; k is the optimal number of clusters. This cluster number k is 

defined by solving of 

                mod2
max ( )

k n
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 
.   (3)  

When the variability in clusters is small, this normalized Dunn’s coefficient usually 

determined the number of clusters correctly (H. Řezanková a D. Húsek, 2012).When the cluster 
                                                
1This is a characteristic for a cluster validity index for fuzzy clustering. 
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variability is greater, the normalized Dunn’s coefficient usually achieved its highest value for the 

highest possible number of clusters (H. Řezanková a D. Húsek, 2012). 

The total average silhouette coefficient SC (4) is the most complicated validity index for 

fuzzy clustering mentioned in this paper. This coefficient can determine the compactness and 

separation degree for the whole data structure, not only for each cluster. The silhouette 

coefficient for each point determines how that point is similar to points in its own cluster 

compared to points in other clusters; it ranges from 1 to +1. The SC coefficient combines ideas 

of both cohesion, which is the sum of the weight of all links within a cluster, and separation, 

which is the sum of the weights between points in the cluster and points outside the cluster, but 

for individual points, as well as clusters.   

For an individual point i, the silhouette coefficient is based on two measures: on the 

average distance between i and every points in its cluster ( )
iiCA  and on the minimal average 

distance between i and points in other clusters (B. Rezaee, 2010). The total average silhouette 

coefficient is than 

                                                ,
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Here Ci denotes cluster labels which do not include the case i as a member, while Ci denotes the 

cluster label which includes the case i. If ,max(min( ), )
iij i iCA j C A  equals 0, the silhouette 

coefficient of case i is not used in the average operations. The average SC over all data in  

a cluster is a measure of how tightly grouped all the data in the cluster are. Thus the 

average SC over all data of the entire dataset is a measure of how appropriately the data has been 

clustered. If there are too many or too few clusters, as may occur when a poor choice of k is used 

in the k-algorithm, some of the clusters will typically display much narrower silhouettes than the 

rest. The silhouette coefficient is typically between 0 and 1. When the silhouette coefficient is 

closer to 1, it means the best clustering result. When the variability in clusters is small, the SC 

usually helps to determine the number of clusters correctly (H. Řezanková a D. Húsek, 2012).  

 

2. The modified approach 
As we can see, all indexes have drawbacks with evaluation of clustering results in a large 

number of clusters and with increasing variability of data. They do not solve the problem of 

identifying the correct number of clusters. 

These drawbacks are evident also in results of the analysis of the well-known datasets 

Iris, Glass and Vowel (http://archive.ics.uci.edu/ml/datasets.html). For example, both of the 

http://archive.ics.uci.edu/ml/datasets.html).
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indexes (1) and (4)  Dunn's coefficient PC and SC  for the Iris dataset show, that the best 

number of clusters is two (instead of the correct number of three). The silhouette coefficient 

evaluates one-element clusters by zero. That is why the silhouette coefficient achieves its highest 

value for two clusters in analyzed data (K. Zalik, 2011). 

This is due to the fact that the clusters are overlapping and Dunn’s coefficient is not able 

to recognize the correct structure of the clusters. A similar situation is observed in the evaluation 

of data clustering in sets Vowel and Glass, where the coefficients do not determine the number 

of clusters correctly. 

Our task is to propose an alternative coefficient that will work better with the increasing 

variability of data and with the different number of clusters. We introduce the next modified 

approach, which is to combine two components into one index; in doing so, we use the harmonic 

mean. One of these components is based on fuzzy clustering theory and the other one is based on 

hard clustering theory. The theory of fuzzy clustering is based on the assumption that each object 

belongs to each cluster with a membership degree uij.The hard clustering theory is based on the 

assumption that each object belongs to one cluster, the average distance from the cluster centre 

and points of this cluster should be minimal. 

Joining two elements based on different approaches into one index helps to reduce 

disadvantages of both. Let him be the first element Dunn’s coefficient (1).  

We can distinguish two extreme situations:  

1) completely fuzzy clustering, where all uij = 1/k and then PC = 1/k; 

2) hard clustering, where one uij = 1, all others uij = 0 and then PC = 1. 

The second element is based on the hard clustering theory: we calculate the ratio of the 

distance minimum in case of k clusters to the distance minimum in case of a single cluster, 

                                                        ,min

1,min

id
C

d
 .   (5)

  
Here ∑di,min is the minimal sum on the Euclidean distances between points in the case of k 

clusters; and d1,min is the minimal sum on the Euclidean distances between points in the case of a 

single cluster (when the dataset is one cluster, it means before clustering). The sum of di,min 

should be minimal for the best clustering, it means the minimal value of C should achieve the 

minimum for the best clustering. 

We want to combine two parts in the aggregate function: one of them is Dunn’s 

coefficient (the maximum value for the best clustering), and the second one should also strive to 

maximum; that’s why we use 1  C = N (which achieves the maximum value for the best 

clustering). 
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 And now the optimization problem is to solve. It can be represented in the following way: 

it consists of  minimizing a real function f(PC, N) by systematically  choosing input values from 

within an allowed set and computing the value of the function. This set we can describe as: 
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In the case that N = 0 we have a dataset as a single cluster. 

These conditions are met by function E, 

     

21 min.
1 1

E

PC N

  
  
 

               (7)                   

It tends to its minimum for the best clustering, because the inverse values of the indexes of PC 

and N receive its maximum for the best clustering. 
 

3. The experiments 
Now, we introduce how our approach works in three known datasets: Iris, Glass and Vowel 

(http://archive.ics.uci.edu/ml/datasets.html).  The datasets are described as follow: 

The dataset Iris:   

It contains three classes of 50 cases each (the total number of cases is 150), where each class 

refers to a type of iris plant. One class is good separable from the other two; the latter are not 

linearly separable from each other.  

The dataset Glass:  

The number of cases is 106, six classes, the number of attributes is 9 (numeric, predictive 

attributes). 

Dataset Vowel:  

The number of cases is 528, 11 classes, the number of attributes is 10 (numeric, predictive 

attributes). The task of our experiments is to estimate the proper number of clusters in the actual 

datasets with help of the modified approach. 

We applied the k-means clustering algorithm with Euclidean distance on these three 

different datasets. And we applied fuzzy k-means clustering to calculate the degree of belonging 

to clusters for every case. The reason to choose these approaches is because they are simple and 

well known by the scientific community. 

http://archive.ics.uci.edu/ml/datasets.html).
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To determine the correct number of clusters, we now calculate the PC (1) and PCmod (2) 

coefficients, which is based on the membership degrees, the SC coefficient (4) based on the hard 

clustering technique and the modified coefficient E (7), which includes hard clustering (distances 

between points) and fuzzy clustering (memberships degrees) basis.  

Iris dataset: 

When the clusters are well-separated and the number of clusters is clearly defined, there 

is no problem with evaluating the right number of clusters. However, when data are overlapped, 

the concept of what is a cluster can be distinct for different methods, and consequently, the 

number of clusters too. The Iris data are overlapped and as we can see in Table 1, the SC, PC and 

PCmod coefficients estimate the number of cluster as two. The modified approach shows the right 

number of clusters three. The behavior of all the coefficients is also described by Fig. 1. 

Glass dataset: 

The right number of clusters for these data is six. The SC and PC coefficients show that 

the best number of clusters is two (Table 2); the modified method shows six clusters (the 

minimum value of the coefficient for all possible solutions). We can see the behavior of the 

coefficients on Fig. 2, gradually declining curve tells us about the declining value of the 

coefficient with increasing number of clusters. The same case with the Silhouette coefficient 

declining curve means worse clustering results. And rising curve of the modified coefficient 

means worse clustering results. 

Vowel dataset: 

Now the result of the modified approach was compared with SC, PCmod and PC 

coefficient on Vowel dataset (Table 3). The right number of clusters is eleven. The SC 

coefficient and the modified method estimate the right number of clusters eleven, and the PC 

coefficient shows the right number of clusters as three. The behavior of the coefficients is also 

described by Fig. 3. 

                       Table 1. Dataset Iris; the results 

The name of the coefficient 
SC PC PCmod E (New) 

The number of clusters 

2 0,6723 0,8922 0,7844 0,8302 

3 0,5629 0,7833 0,6751 0,7869 

4 0,5006 0,7067 0,6091 0,7978 

5 0,3701 0,7057 0,5821 0,7892 

6 0,3244 0,6878 0,5143 0,7914 
7 0,4466 0,7009 0,4801 0,8046 

                             Source: own calculation 
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                      Fig 1. Dataset Iris; the results 

 
                           Source: own calculation 

 

                      Table 2. Dataset Glass; the results 

The name of the coefficient 
SC PC PCmod E (New) 

The number of clusters 

2 0,9421 0,9553 0,9107 0,4631 

3 0,5947 0,4233 0,1350 0,4701 

4 0,5559 0,4259 0,2345 0,4999 

5 0,5468 0,4103 0,2629 0,4971 

6 0,4933 0,3318 0,1982 0,4358 

7 0,2614 0,8023 0,7693 0,7300 
8 0,2415 0,3861 0,2984 0,4917 

9 0,3350 0,7832 0,7561 0,7151 

10 0,2159 0,7723 0,7471 0,7230 

                           Source: own calculation 
 

                    Fig 2. Dataset Glass; the results 

 
                           Source: own calculation 
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                    Table 3. Dataset Vowel; the results 

The name of the coefficient 
SC PC PCmod E (New) 

The number of clusters 

2 0,1930 0,4123 0,3318 0,1757 

3 0,2085 0,3578 0,0368 0,2494 

4 0,2044 0,2705 0,0273 0,2580 

5 0,1973 0,2170 0,0213 0,2505 

6 0,2085 0,1809 0,0172 0,2342 

7 0,2047 0,1552 0,0145 0,2157 

8 0,1880 0,1357 0,0123 0,1993 

9 0,2086 0,1209 0,0111 0,1853 

10 0,2315 0,1100 0,0112 0,1737 

11 0,2230 0,1059 0,0165 0,1701 

12 0,2134 0,1004 0,0161 0,1713 

                           Source: own calculation 
 

                    Fig 3. Dataset Vowel; the results 

 
Source: own calculation 

 

Conclusions 

The validation of clustering structures is the most difficult and frustrating part of the cluster 

analysis. That’s why the issue of the definition of the indexes, which would be good for the data 

with large variability and a big number of clusters, is not so far resolved. As can be observed on 

the results of the approach, which we suggest, this modification can increase the efficiency of the 

correct determination of the number of clusters.  

From experimental results can be drawn that modification method determine the number of 

clusters correctly. We plan to study this approach in other data sets.  
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