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ON-LINE CALIBRATION OF THE EWMA MODELS:  
SIMULATIONS AND APPLICATIONS 
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Abstract 

The exponentially weighted moving average (EWMA) model is a particular modelling scheme 

used by RiskMetrics for predicting the current level of volatility of financial time series. It is 

designed to track changes in volatility by assigning exponentially decreasing weights to the 

observed historical squared financial returns. The applied weighting factors are conventionally 

prescribed by experts (users), or they are estimated employing standard statistical inference 

procedures, e.g. the maximum likelihood method. However, it is also possible to consider 

recursive (sequential or on-line) estimation techniques, which represent numerically effective 

alternatives to the already established approaches. The aim of this paper is to introduce and study 

a one-stage self-weighted on-line estimation algorithm appropriate for calibrating the EWMA 

model. Firstly, its derivation and theoretical properties are briefly outlined and summarized. 

Secondly, its practical performance is investigated by various Monte Carlo simulations. Lastly, 

the suggested calibration scheme is examined in the context of empirical financial data. In 

particular, volatility of the central index of Prague Stock Exchange (PX index) is monitored 

using the suggested estimation technique to reflect (eventual) structural changes of the EWMA 

parameter. 
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Introduction 

The exponentially weighted moving average (EWMA) model is a particular conditional 

heteroskedasticity modelling scheme. This theoretical approach is frequently linked to 

investigating financial time series, more specifically to monitoring time-varying volatility. The 

EWMA model has been primarily developed as an alternative to the GARCH model for 

anticipating future volatility of financial returns. The name of this concept originates from the 

fact that the conditional variance is an exponentially weighted sum of historical squared financial 

returns with the geometrically declining weights going back in time (Tsay, 2013). Therefore, this 
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model is simply capable to track changes in volatility. Since its introduction, it has been 

investigated from various theoretical and practical perspectives (Morgan, 1996). It has been 

successfully applied in many empirical studies. Moreover, the EWMA framework is regarded as 

the benchmark by many practitioners. An extensive body of academically and practically 

oriented literature exists in this field of research. For example, one may employ the EWMA 

model to improve the quality of predicted volatility traded on future markets (Covrig & Low, 

2003), to examine volatility of various stock indices (Walsh & Tsou, 1998), or to calculate 

distinct risk measures (e.g. Value at Risk) for constructing an optimal portfolio of risky financial 

assets (Brooks & Persand, 2003). 

The value of the only parameter of the EWMA model defining the discussed 

geometrically declining weights is usually prescribed by experts or users (Morgan, 1996). 

Alternatively, it can be calibrated employing standard (off-line) statistical inference procedures 

(e.g. the conditional maximum likelihood method). However, it is indeed rarely estimated 

sequentially (Tsay, 2013). On the other hand, it might be advantageous to adopt a numerically 

effective technique that could estimate and control this parameter (or model) in real time. For 

instance, one can apply this approach in the case of high-frequency data. 

The aim of this contribution is to introduce and study a one-stage self-weighted recursive 

estimation method for calibrating the EWMA model on-line. The suggested algorithm has been 

derived using standard recursive identification instruments (Ljung, 1999). This method has 

demonstrated its numerical capabilities by means of simulations and an empirical application. 

This paper is organized as follows. Section 1 reviews the EWMA modelling framework 

jointly with its fundamental features and introduces corresponding off-line estimation 

procedures. Section 2 derives and briefly comments the one-stage self-weighted recursive 

algorithm for calibrating the EWMA model. Section 3 analyzes this estimation method by Monte 

Carlo experiments. Section 4 considers an empirical application of this methodology. The paper 

is summarized by conclusions. 

 

1 EWMA model 

Formally, the EWMA model of returns {yt} is commonly defined as (Morgan, 1996): 

,)1(   , 2
1

2
1

2
  tttttt yy   (1) 

where the only modelling parameter λ lies in the interval (0,1) and {εt} is a sequence of i. i. d. 

random variables with zero means and unit variances. One can compute the following 

conditional moments: 
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where Ωt denotes the smallest σ-algebra with respect to which ys is measurable for all s ≤ t. 

Apparently, positivity of the conditional variance σt
2 is ensured by construction; see (1). The 

one-step-ahead prediction of σt
2 is expressed as: 
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Similarly, the k-step-ahead prediction of σt
2 is given by (for k > 1): 

.)|(E: 2
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22
| tttkttkt     (4) 

To calibrate the EWMA model (1) using T observations {y1, ..., yT}, we usually employ 

one of these methods: (i) the value of λ is prescribed by experts (e.g. the choice 0.94 is obviously 

recommended for daily data); (ii) λ is estimated minimizing the root mean squared error of the 

forecast inaccuracies (yt
2 - σt

2) assuming that y0 and σ0 are either defined or observed; 

(iii) supposing certain probability distribution of {εt} (the Gaussian innovations are preferred in 

regarding to consistency of estimates), one may calibrate the parameter λ maximizing the 

conditional log-likelihood function (y0 and σ0 are known). 

 

2 On-line calibration of the EWMA model 

In this section, we shall introduce the one-stage self-weighted recursive estimation algorithm that 

can calibrate the parameter of the EWMA model (1) in real time. In many instances, this 

approach may be truly advantageous. For example, it is possible to monitor or predict volatility 

sequentially in the high-frequency financial data context. Recursive estimation methods are also 

effective in terms of memory storage and computational complexity since the current parameter 

estimates are evaluated using the previous estimates and actual measurements. Incidentally, they 

can be used to detect structural modelling changes. 

Applying general recursive prediction error method (Ljung, 1999), one can derive the 

recursive scheme for on-line estimating the parameter λ of the EWMA model (1). Notice that the 

conditional log-likelihood criterion with Gaussian innovations {εt} is assumed. This sequential 

algorithm can be concisely formulated as follows: 
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where t̂ denotes the recursive estimate of the parameter λ. We recommend initializing the 

previous procedure under these conditions (Ljung, 1999): (i) 0p̂ is a large positive number, e.g. 

5
0 10ˆ p ; (ii) 0̂ should be taken from the interval (0,1), e.g. as 0.94 as is usually preferred by 

RiskMetrics for daily data; (iii) 2
1̂  is a positive number (e.g. the sample variance of several first 

measurements) and 'ˆ 2
1 equals zero; (iv) {αt} is a deterministic sequence of positive real numbers 

smaller or equal to one that either accelerates convergence or allows tracking parameter changes 

(see the discussion below and also Section 3). 

At each time t, it is necessary to check whether the recursive estimate belongs to the 

interval (0,1) before evaluating other quantities in (5). If not, one should artificially set the 

current estimate as the previous one to avoid eventual specification problems. This simple 

projection ensures positivity of the conditional variance. The sequence {αt}, the so-called 

forgetting factor, may be selected as follows: (i) αt gradually grows to 1 as t goes to infinity, e.g. 

αt = 0.99αt-1 + 0.01, α0 = 0.95; (ii) αt = α for some α in (0,1), e.g. α = 0.995, and all t. The first 

option corresponds to estimating the model (1) supposing time-invariant λ. The increasing 

forgetting factor improves the convergence speed of the algorithm during the transient phase. 

The second one is associated with the eventuality that λ can vary over time. The constant 

forgetting factor less than one progressively reduces the influence of historical measurements, 

and thus enables to track parameter changes. 

Theoretical properties of the suggested recursive estimation algorithm coincide with the 

off-line case (as t goes to infinity), where the corresponding conditional log-likelihood criterion 

is maximized. Namely, convergence and asymptotic distributional characteristics are identical 

for a sufficiently large portfolio of observations (Ljung, & Söderström, 1987). 

 

3 Monte Carlo experiments 

This section briefly investigates the proposed recursive estimation technique by means of Monte 

Carlo simulations. Various numerical experiments have been performed with almost analogical 
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results. Therefore, only two representative instances are reviewed here. Particularly, we 

replicated two EWMA processes (1) with Gaussian disturbances of the length 10000 with two 

distinct parameters λ (i.e. 0.94 and 0.99) in order to study convergence properties of the 

suggested estimation method. We generated one thousand repetitions. The chosen length 

corresponds to an approximately three-hour dataset working with one-second data. All 

computations were conducted in the statistical software R. 

Figure 1 illustrates numerical behaviour of the one-stage self-weighted recursive 

prediction error procedure defined by (5) specified by the consequent recommendations (αt 

gradually grows to one as before). The estimation process was stopped at the times Ta = 1000, Tb 

= 3000, Tc = 5000, and Td = 10000; the current estimates were always stored. Figure 1 

summarizes sample characteristics of these estimates using the box-plots for each stopping time. 

It is apparent that the estimates converge to the true values jointly with decreasing variances. 

Thus, one might conclude that the suggested self-weighted recursive method (5) is capable to 

estimate the EWMA parameter in accordance with the literature (Ljung, 1999). 

 

Fig. 1: Results of Monte Carlo simulations for both analysed EWMA processes 
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Source: Author 

Additionally, one may examine the empirical behaviour of different estimating 

procedures for the case of the EWMA model (1) with the parameter varying over time and 

compare on-line and off-line methods altogether. Namely, we replicated two EWMA processes 

(1) with Gaussian innovations of the length 10000 with the time-varying parameter λ 

(specifically, λ = 0.94 for t = 1, ..., 5000, and λ = 0.99 for t = 5001, ..., 10000). One thousand 

replications were generated. Then, we analyzed convergence properties of these estimation 

procedures: (i) the recursive estimation scheme (5) with αt increasing to one given as above; 

(ii) the recursive estimation scheme (5) with αt = 0.995 for all t; (iii) the recursive estimation 

scheme (5) with αt = 0.999 for all t; finally (iv) the usual (off-line) conditional maximum 

likelihood method suitable for the normally distributed EWMA model (Tsay, 2013). 
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Figure 2 draws these four estimates in detail. To be more precise, medians of available 

estimates have been computed at each time t, and they are represented in Figure 2. Clearly, the 

off-line (conditional maximum likelihood) estimates have demonstrated the least accuracy. The 

self-weighted recursive algorithm (5) with the forgetting factor growing to one has slowly 

reflected the underlying change in the parameter. Finally, the on-line calibration procedures with 

the constant forgetting factors have been able to track the change more conveniently. The closer 

the forgetting factor is to one, the estimates are more conservative, i.e. less volatile but also less 

precise. To conclude, the recursive estimation scheme (5) with the particular choices of {αt} has 

outperformed the off-line estimator in this case. The off-line method is not adapted to follow the 

changes in the EWMA parameter over time. 

 

Fig. 2: Comparison of medians of the various EWMA parameter estimates 
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4 Empirical application: The PX index 

The PX index (ISIN XC0009698371) is an official market-cap weighted stock index composed 

of the most liquid shares traded on the Prague Stock Exchange. In particular, it is a price index of 

blue chips issues, which is calculated in real-time and weighted by market capitalization. 

Dividends are not considered. A new value of the PX index is delivered by a particular formula; 

it reflects each single price change of index constituents. The maximum weight for a share issue 

is 20% on a decisive day. A portfolio of basic issues is variable, and it can be restructured 

quarterly (Wiener Borse, 2015). 
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The PX index was launched on 5th April 1994 (initially known as PX-50). Its base was 

composed of the fifty most significant share issues operating on the Prague Stock Exchange. The 

opening base value was fixed on 1000. The number of core issues has been variable since 

December 2001. In March 2006, the PX index was officially introduced. It took over the whole 

history of the replaced index PX-50 continuing in its development. In March 2015, the PX base 

contained fourteen issues. The top five stocks had approximately 85% share of market 

capitalization in the portfolio. The majority of capitalization was allocated in banking, energy, 

and insurance sectors. Further details (including historical data) can be found on the official web 

pages of the Prague Stock Exchange (Prague Stock Exchange, 2015). 

Figure 3 presents all historical daily closing quotes of the PX index until 31st March 2015 

(i.e. 5248 observations). The minimal value 316 occurred on 8th October 1998 after the Russian 

financial crisis. The maximal observation 1936 was achieved 29th October 2007. It is visible that 

the crisis year 2008 was truly exceptional (Hendrych, 2014). 

 

Fig. 3: Historical closing quotes and log-returns of the PX index 
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Source: Author 

In this section, we accept the pragmatic argument that it may be convenient to study 

(long) time series of daily financial (logarithmic) returns by conditional heteroskedasticity 

models assuming time-varying parameters (Trešl, 2011). Under this supposition, we shall 

analyze the daily log-returns of the PX index closing quotes employing the EWMA model 

calibrated by the suggested estimation scheme (5) with the constant forgetting factors. 

In particular, the observed daily returns are investigated by the following methods: (i) the 

estimation scheme (5) using αt that grows to one (see above); (ii) the algorithm (5) with 

αt = 0.995 for all t; (iii) the algorithm (5) with αt = 0.997 for all t; finally (iv) the off-line 

conditional maximum likelihood procedure. The on-line estimates delivered applying (i)-(iii) can 

track time-varying parameters as can be concluded from Figure 2. 
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Figure 4 presents the different paths of the estimated EWMA parameter λ for the PX 

index log-returns. Apparently, the recursive estimates calculated by (5) using the constant 

forgetting factors fluctuate around the off-line one very similarly. One can discover similar 

trends, which obviously correspond to the overall development of the PX index historical closing 

quotes (compare with Figure 3). However, all mentioned recursive estimates are less reliable at 

the beginning of the observed time series since these methods must be properly initialized at first 

(they are more sensitive here). 

 

Fig. 4: Different estimates of the EWMA parameter (the case of the PX log-returns) 
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Figure 5 investigates the calculated conditional volatilities of the logarithmic returns of 

the PX index employing all previous procedures for calibrating the EWMA parameter λ. At first 

sight, one could conclude that all considered outputs follow analogical trends. The estimates 

based on the off-line conditional likelihood procedure and the suggested recursive algorithm (5) 

seem to be closely related. Nonetheless, to realize which of the studied calibration techniques 

offer the better predictions of volatility of financial returns, it would be necessary to employ 

additional criteria that question this issue from the financial management point of view (Patton, 

2011). Alternatively, one may compare the achieved values of the (conditional) log-likelihood 

function associated with the particular estimation problem (or equivalently contrast some 

information criteria). These are recapitulated in Table 1. The complete and truncated samples are 

considered in calculating the presented log-likelihoods. Namely, first 10%, 30%, and 50% 

observations were cut off to verify the adequacy since the recursive methods are less stable 
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during the initial phase of estimation (see above). Consequently, the estimation algorithm (5) 

introduced in Section 2 is visibly competitive. 

 

Fig. 5: Conditional volatilities of the PX log-returns using various calibration methods 
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Source: Author 

Tab. 1: Values of the log-likelihood functions associated with the estimates in Figure 5 

Sample | Method Off-line On-line (αt →1) On-line (αt = .995) On-line (αt = .997) 

Complete 15819.37 15743.82 15748.40 15745.98 

Truncated (first 10%) 14177.85 14155.86 14176.99 14178.32 

Truncated (first 30%) 11005.22 10989.78 11010.51 11011.65 

Truncated (first 50%) 7859.44 7840.45 7865.21 7863.89 

Source: Author 

Conclusion 

In this paper, we introduced the one-stage self-weighted recursive estimation algorithm for 

calibrating the RiskMetrics EWMA model employing the general recursive identification 

instruments. The qualities of the proposed method have been demonstrated using simulations. 

The accepted modelling framework has been applied to investigate volatility of the PX index 

comparing different estimators. It has proved its competitiveness and usefulness. These findings 

motivate further research on on-line estimation and its possible practical applications (e.g. in the 

option pricing or optimal portfolio framework). 

Acknowledgment 



The 9th International Days of Statistics and Economics, Prague, September 10-12, 2015 

529 

 

This research was supported by the grants GA P402/12/G097 and SVV 2015 No. 260225. 

 

References 

Brooks, C., & Persand, G. (2003). Volatility forecasting for risk management. Journal of 

Forecasting, 22(1), pp. 1-22. 

Covrig, V., & Low, B. (2003). The quality of volatility traded on the over-the-counter currency 

market: A multiple horizons study. Journal of Futures Markets, 23(3), pp. 261-285. 

Hendrych, R. (2014). On comparing various modelling schemes: The case of the Prague Stock 

Exchange index. In: Löster, T., & Pavelka, T. The 8th International Days of Statistics and 

Economics: Conference Proceedings. (pp. 456-465). Slaný: Melandrium. 

Ljung, L. (1999). System identification: Theory for the user. Upper Saddle River: Prentice Hall 

PTR. 

Ljung, L., & Söderström, T. (1987). Theory and practice of recursive identification. Cambridge, 

Massachusetts: MIT Press. 

Morgan, J. (1996). RiskMetrics™ - Technical document. (4th edition). New York: Morgan 

Guaranty Trust Company. 

Patton, A. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of 

Econometrics, 160(1), pp. 246-256. 

Prague Stock Exchange. (2015). Retrieved from: http://www.pse.cz 

Trešl, J. (2011). Srovnání vybraných metod predikce změn trendu indexu PX. Politická 

ekonomie, 2011(2), pp. 184-204. 

Tsay, R. (2013). Analysis of financial time series. Hoboken, N.J.: Wiley. 

Walsh, D., & Tsou, G. (1998). Forecasting index volatility: Sampling interval and non-trading 

effects. Applied Financial Economics, 8(5), pp. 477-485. 

Wiener Borse. (2015). Retrieved from: http://www.wienerborse.at/ 

 

Contact 

Radek Hendrych 

Charles University in Prague 

Faculty of Mathematics and Physics 

Dept. of Probability and Mathematical Statistics 

Sokolovská 83, 186 75 Prague 8, Czech Republic 

Radek.Hendrych@mff.cuni.cz 

http://www.pse.cz
http://www.wienerborse.at/
mailto:Radek.Hendrych@mff.cuni.cz

