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ILL-POSED PROBLEMS IN TIME SERIES ANALYSIS 

Richard Horský   

 

Abstract 

The term ill-posed problem has become popular in modern science since the middle of the 

20th century. It turns out that a lot of problems not only in different areas of classical 

mathematics but also in astronomy, geophysics, medicine and other applied sciences can be 

classified as ill-posed and they belong to the most complicated. The analysis of stochastic 

processes provides examples of such problems. The typical example is the random walk. In 

fact any model generating a time series is ill posed whenever it contains a unit root. 

The efficient methods for solving ill-posed problems has been developed since the end of 

1950´s. They are generally denoted as regularization methods. Among them probably well-

known and most favorite is the Tikhonov regularization method. 

Key words:  ill-posed problem, regularization, least squares, stationary process, random walk  

JEL Code:  C22, C65  

 

Introduction  
Ill-posed problem is the term introduced for the first time by J. Hadamard (1902). He 

formulated what means that a problem is well-posed in the context of the differential 

equations (Cauchy problem for Laplace equation): the problem is well-posed if it has a unique 

solution that continuously depends on its data. Otherwise it is called ill-posed problem. Later, 

in 1950´s and early 1960´s, a group of Russian mathematicians led by A. N. Tikhonov 

appeared a lot of new approaches and some methods that became fundamental for the theory 

of ill posed problems and drew attention of mathematicians all over the world to this theory. 

Due to the powerful computers the area of applications for this theory has extended to many 

fields of science. 

Ill-posed problems occur everywhere around us. It is clearly very easy to make a 

mistake if we wish to reconstruct some event in the past from several facts in the presence 

(causes of disease from medical examination) or vice versa to predict something in the future 

(one week weather forecast from atmospheric data). In fact the theory of ill-posed problems 
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has become widely used in solving problems in a plenty of fields of science, economics not 

excluded (Horowitz, 2014, Hoderlein, Holzmann, 2011, Lu, Mathe, 2014). In mathematics we 

can find many examples of such problems almost in all branches: arithmetic, algebra, 

calculus, differential and integral equations, functional analysis. The ill-posed problems can 

be found also in the time series analysis (Sanchez, 2002). The stochastic difference equation 

(16) below, provides such an example. The ill-posedness is in a close relation to the problem 

of overdifferencing of a time series (Bell, 1987). 

1 Ill-posed equation and its regularization  
Abstract access to many problems in science and engineering leads to mathematical model the 

form of which is an operator equation 

ݔܣ = ܾ,                                                                            (1) 

where ܣ:ܷ → ܸ is a mapping defined on certain sets U and V endowed with suitable 

structures. It is usual to assume that U and V are normed linear spaces, especially that they are 

Hilbert spaces, A is a linear and bounded operator. The basic question is whether a solution to 

(1) exists and is unique in U for given right side ܾ ∈ ܸ. Another important question is whether 

the solution depends continuously on the data b, which means that a small perturbation of b is 

the reason for a small deviation in the solution (stability). If all these questions are answered 

affirmatively the problem (1) is called well-posed (in classical Hadamard´s sense), otherwise 

it is ill-posed. The existence and uniqueness of the solution to (1) is ensured if A is a bijection 

(linear isomorphism). Moreover, if U and V are Banach spaces and A is a bounded, injective 

operator with a closed range ℛ(ܣ) , the inverse ିܣଵ is bounded as well and hence the problem 

(1) is well-posed. The typical example of the well-posed problem is the integral equation of 

the second kind (Nair, 2009) or the equation for ARMA process (Arlt, 1999). 

The frequent case why (1) is ill-posed is that A is not bounded below. A typical 

example for this is a compact operator of infinite rank (Lukeš, 2012). Another example of the 

ill-posed problem is the topics of this paper. 

 

1.1 General concept of regularization  
Suppose again the equation (1), where U and V are normed linear spaces, A is a bounded 

linear operator and (1) is the ill-posed problem. Now we deal with the case which often arises 

in practical situations, i.e. the inverse of A is unbounded. The stability of the solution is 

obtained by approximation of the given ill-posed problem by certain well-posed one. These 

procedures are called regularization methods.  



The 9th International Days of Statistics and Economics, Prague, September 10-12, 2015 

558 
 

The regularization strategy is a family of bounded linear operators ܴఈ :ܸ → ߙ,ܷ > 0, 

for which lim
ఈ→ା

‖ܴఈݔܣ − ݔ for any ‖ݔ ∈ ܷ. The regularization strategy may not be uniformly 

bounded. In fact, there is a sequence of positive numbers ߙ → 0 such that ฮܴఈฮ → ∞. 

Assume the converse: there is a constant c such that for any ߙ > 0 it holds ‖ܴఈ‖ < ܿ. Then 

for any ݕ ∈ ℛ(ܣ) the following inequalities hold: 

‖ݕଵିܣ‖ ≤ ݕଵିܣ‖ − ܴఈݕ‖ + ‖ܴఈݕ‖ ≤ ݔ‖ − ܴఈݔܣ‖ + ‖ܴఈ‖‖ݕ‖ ≤ ݔ‖ − ܴఈݔܣ‖+  .‖ݕ‖ܿ

The first term on the right side tends to zero (the definition of the regularization strategy) and 

hence we obtain the contradiction with ିܣଵ is unbounded. 

Another moment in the regularization is the fact that the right hand side in (1) may 

involve some noise. Suppose that ܾఋ ∈ ܸ is a perturbation of b, ‖ܾ − ܾఋ‖ ≤  We define .ߜ

ఈ,ఋݔ = ܴఈܾఋ .                                                                       (2) 

The vector (2) is called the regularized solution to the perturbed equation of (1). 

 Let ݔ∗ ∈ ܷ be the exact solution to (1). Now we derive the fundamental estimate for 

regularization strategy: 

ฮݔ∗ − ఈ,ఋฮݔ ≤ ∗ݔ‖ − ܴఈܾ‖ + ‖ܴఈܾ − ܴఈܾఋ‖ ≤ ∗ݔ‖ − ܴఈݔܣ∗‖ + ‖ܴఈ‖(3)        .ߜ 

As ߙ → 0 + the first term on the right side in (3) tends to zero (regularization effect) whereas 

the second one grows to infinity (ill-posedness efect). We observe two competing effects 

which enter (3). These effects force us to make a trade off between accuracy and stability. The 

natural question is how to choose the value of parameter ߙ when ߜ and ܾఋ  are given. We 

briefly comment this within the discussion of Tikhonov regularization method. 

Notice that the exact solution ݔ∗ need not exist. On the other hand the regularized 

solution (2) always exists. If the classical solution does not exist, usually it can be replaced by 

so called generalized solution which can be regarded in different ways. The classical approach 

to the notion of the generalized solution is described in the following section. 

 
1.2 Generalized solution in the sense of the least squares  
We will suppose from now on that in equation (1) U and V are Hilbert spaces. If ܾ ∉ ℛ(ܣ), 

then there is no (classical) solution to (1). In that case we try to find ݔ ∈ ܷ for which ݔܣ is 

the closest element to b:  

ݔܣ‖ − ܾ‖ = inf
௫∈

ݔܣ‖ − ܾ‖.                                           (4) 

If such a vector ݔ exists we call it the generalized solution to the equation (1) in the sense of 

least squares (GSLS). The existence of GSLS is assured if ℛ(ܣ) is closed subspace of V (e.g. 

if ℛ(ܣ) is of finite dimension). If it is not the case the GSLS need not exist. If ℛ(ܣ) is a 
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dense subspace of V different from V there exists ܾ ∈ ℛ(ܣ) such that (1) does not have the 

GSLS. 

Let ܲ:ܸ → ܸ be the orthogonal projection onto ℛ(ܣ)തതതതതതത (the closure of the range of A in 

V). Then the following statements are equivalent: 

i. ݔ ∈ ܷ is the GSLS to (1). 

ii. ݔܣ =  .ݔܲ

iii. ݔܣ∗ܣ =  (5)                                                                                                                .ܾ∗ܣ

The equation (5) is known as the normal form of the equation (1).  

In general case the GSLS (if it exists) is not unique. The set of all GSLS´s is a linear 

manifold ࣡ = ቄݔ ∈ ݔܣ‖:ܷ − ܾ‖ = inf
௫∈

ݔܣ‖ − ܾ‖ቅ = ݔ +  is the (ܣ)ࣨ where ,(ܣ)ࣨ

kernel of the operator A. To reach the uniqueness we have to impose some additional 

requirement. We usually require that GSLS shall have the least norm. If ࣡ ≠ ∅ then there 

exists unique element ݔ ∈ ࣡, so called the best approximate solution to (1),  such that ‖ݔ‖ =

inf
௫∈࣡

 .‖ݔ‖

In this context there is introduced the notion of the generalized Moore-Penrose 

pseudoinverse ܣற:ࣞ → ܷ defined on ࣞ = ℛ(ܣ)⊕ℛ(ܣ)ୄ mapping ܾ ∈ ࣞ on the best 

approximate solution  ݔ ∈ ܷ. The domain ࣞ of the pseudoinverse ܣற is a dense subspace of 

V equal to V if and only if ℛ(ܣ) is a closed subspace of V. ܣற is a linear operator which is 

closed once A is closed and this is true if A is bounded. As the consequence of the closed 

graph theorem we obtain that ܣற is bounded if and only if ℛ(ܣ) is a closed subspace of V.  

 

2 The characteristics and properties of the stochastic process 
The stochastic process is a mapping  

࣮:ࢄ → ,ߗ)2ܮ  (6)                                                      .(ߨ

The domain of the mapping (6), the set ࣮, is so called time domain. This set is usually the set 
of all integers (discrete time) or some interval in the real line (continuous time). Here it will 
be the former case and we will write ࢄ = ( ௧ܺ) and talk about stochastic sequence.  The values 
of (6) are the functions that are square integrable on a measurable space Ω with a probability 
measure ߨ. These functions are called random variables. The framework of the space 2ܮ(Ω,ߨ) 
is suitable since the mean and variance of its elements (random variables) are finite. In 
particular, 2ܮ(Ω,  is the Hilbert space with the norm derived from the inner product (ߨ

(ܻܺ)ܧ = ∫ ષߨܻ݀ܺ  for any two random variables ܺ,ܻ ∈ ,Ω)2ܮ ܺܧ the mean is ,(ߨ = ∫ Ωߨ݀ܺ  
and the variance is ܺܦ = ଶܺܧ −  .ଶܺܧ



The 9th International Days of Statistics and Economics, Prague, September 10-12, 2015 

560 
 

The main characteristic of the stochastic process are the function of means ߤ௧ =  , ௧ܺܧ
the function of variances ߪ௧ = ܦ ௧ܺ and the covariance function ݐ)ܥ, (ݏ = )ݒܿ ௧ܺ ,ܺ௦)  
respectively. An example of the stochastic sequence is the constant one ࡱ = (1) with ܺܧ = 1 
and the other characteristics zero. 

 

2.1 Stationary process and white noise 
The stochastic process is called stationary if it has the following three properties (Arlt, 1999): 

i. All the random variables have the same finite mean ߤ = ܧ ௧ܺ . 

ii. All the random variables have the same finite variance ߪଶ = ܦ ௧ܺ = ܧ ௧ܺ
ଶ − ଶܧ ௧ܺ . 

iii. The covariance is dependent only on time distance of the two random variables 

ߛ  = )ݒܿ ௧ܺ ,ܺ௦) = )ݒܿ ௧ܺି ,ܺ௦ି). 

The autocovariance function ߛ of the process (6) is even, so we regard it only for non-

negative k. Obviously ߛ =   .ଶߪ

In the special case, when the mean is zero, variance is constant and the random 

variables within the process are uncorrelated (i.e. ߛ = 0 for ݇ > 0) the process is called 

white noise. We denote it ℰ =  .(ߨ,Ω)ଶܮ White noise is an orthogonal system in  .(௧ߝ)

 

2.2 General linear process 
The general linear process is the process of the form  

௧ܺ = ߤ + ߰ߝ௧ି,                                              (7)
ஶ

ୀ

 

where ߤ is a scalar and (߰) is a given sequence of scalars (weights of the process), ߰ = 1. 
The convergence of the series in (7) is intended in the sense of the convergence in the square 
mean and it is the same as in norm topology of the space 2ܮ(Ω,  This convergence is .(ߨ
equivalent to the stationarity of the process (7). The necessary and sufficient condition for the 
convergence of (7) in the given sense is (߰) ∈ ℓଶ (the space of all square summable 
sequences). 

Another condition  

|߰| < ∞                                                     (8)
ஶ

ୀ

 

is only sufficient for the convergence of (7). It follows from the fact, that (8) means the 
sequence of weights (߰) is in the space ℓଵ (the space of absolutely convergent series) and it 
holds ℓଵ ⊂ ℓଶ (Horský, 2013). 
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3 Lag operator 
The lag operator (backward shift operator) is intended to simplify formal writings in the 
context of difference equations. On the other hand it is a linear operator and thus it is a subject 
to be studied by means of the functional analysis. This operator will be regarded in two 
different normed linear spaces. Both spaces perform a suitable framework from relevant point 
of views. 

3.1 The settings of the convergence structures 
We will consider stochastic process in a slightly distinct form than in (6). The stochastic 
process will be a sequence of random variables 

ࢄ = ( ௧ܺ , ௧ܺିଵ,ܺ௧ିଶ, … )                                           (9) 

for any ݐ ∈ ࣮, where ௧ܺି ∈ ,Ω)2ܮ ,(ߨ ݇ ≥ 0. The sequence (9) will be considered as an 
element in two different spaces. The first one is ℓஶ(ܮଶ), the space of all bounded stochastic 
sequences, with the norm 

ஶ‖ࢄ‖ = sup
ஹ

ටܧ ௧ܺି
ଶ .                                         (10) 

The space ℓஶ(ܮଶ) with the norm (10) is the Banach space (like classical ℓஶ, the space of all 
bounded scalar sequences.) The stationary sequences are contained in ℓஶ(ܮଶ). 

The second space is ℓଶ(ܮଶ), the space of all square summable stochastic sequences 
which is the Hilbert space with respect to the norm derived from the inner product 〈ࢅ,ࢄ〉 =
∑ ௧ିܺ)ܧ ௧ܻି)ஶ
ୀ , i.e. 

ଶ‖ࢄ‖ = ൭ܧ( ௧ܺି
ଶ )

ஶ

ୀ

൱

ଵ
ଶൗ

.                                   (11) 

Even if this space has more comfortable structure than the first one (due to it is the Hilbert 
space), unfortunately it contains no stationary or constant stochastic sequence, unless the 
trivial (zero) sequence. It means that there is no white noise in it. This deficiency can be 
overcome if we adopt slightly modified notions of stationarity and white noise respectively. 
We allow the process to be stationary as far as one wishes then the norms (variances) has to 
fall to zero. 

By the symbol ℳ we denote the space ℓஶ(ܮଶ) or ℓଶ(ܮଶ) respectively. Then we define 
the lag operator (e.g. Dhrymes 1980) as a mapping 

ℳ :ܤ →ℳ, )ܤ ௧ܺ) = ( ௧ܺିଵ).                               (12) 

The norm of the operator (12) in the case of the space ℳ = ℓஶ(ܮଶ) is ‖ܤ‖ =
sup

ಮୀଵ‖ࢄ‖
ஶ‖ࢄܤ‖ = 1 and for any non-negative k it holds that ‖ܤ‖ = 1. The Banach algebra 

ℒ൫ℓஶ(ܮଶ)൯ of all bounded linear operators on the space ℓஶ(ܮଶ) contains polynomials in B. 
We may express any process (7) in the form 
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ࢄ =  ℰ,                                                              (13)(ܤ)߰

where ℰ =   is a white noise and (௧ିߝ)

(ܤ)߰ = ߰ܤ.                                                     (14)
ஶ

ୀ

 

The series on the right side in (14) is convergent in the Banach space ℒ൫ℓஶ(ܮଶ)൯, i.e. in the 
operator norm, if (8) holds. In fact,  

‖(ܤ)߰‖                ≤ |߰|‖ܤ‖ =
ஶ

ୀ

|߰|
ஶ

ୀ

. 

The operator (14) is called the linear filter. It transforms a white noise to a general linear 
process, see (13). 

Example 3.1 The linear filter is called the geometric lag operator, if ߰ = ߣ  is a fixed ߣ ,
scalar. The condition (8) is satisfied if and only if |ߣ| < 1. If ߣ = 1, the series (14) is 
divergent. In this case its partial sums define the divergent process called the random walk. 

Example 3.2 An important class of stochastic processes is described by a stochastic difference 
equation (Arlt, 1999) 

Φ(ܤ)ࢄ = Θ(ܤ)ℰ,                                                        (15) 

where Φ(ܤ) and Θ(ܤ) are polynomials (in B) of the order p and q, respectively. They are the 
well-known ARMA(p,q) processes if Φ(ݖ) ≠ 0 for any |ݖ| ≤ 1. In such case the equation 
(15) has a unique solution and this solution is a stationary sequence. In terms of the previous 
chapter (15) is well-posed. However if Φ(1) = 0, the equation is ill-posed as we explain in 
the next section. It means we encounter a nonstationary process. The process is denoted as 
ARIMA(p,d,q), where ݀ > 0 is the multiplicity of the unit as a root of the Φ(ݖ). We can 
watch of course only a finite part of this process and it remains a question why such a 
sequence (in infinite dimension) exists in some sense. 

The norm of the lag operator (12) as an element of ℒ൫ℓଶ(ܮଶ)൯ is equal to 1 as well as 
in ℒ൫ℓஶ(ܮଶ)൯. 

3.2 Spectral properties of the lag operator 
The analysis of the spectrum of the lag operator starts with the fact that ‖ܤ‖ = 1. It means 
that the spectrum of the operator B is contained inside the unit circle (0)ܭ = ߣ} ∈ ℂ: |ߣ| ≤ 1}. 
In fact, this spectrum is the whole circle (0)ܭ since the spectrum of linear bounded operator 
is a non-empty compact set in the complex plane. The structure of this spectrum is analyzed in 
Horský, 2013. Main results are that the sequence ܧఒ = (1, ,ߣ ,ଶߣ … ) is for any |ߣ| < 1 an 
eigenvector of (12). The boundary of the unit circle is also in the point spectrum (Taylor, 
1974) for only ܤ ∈ ℒ൫ℓஶ(ܮଶ)൯. If ܤ ∈ ℒ൫ℓଶ(ܮଶ)൯ and |ߣ| = 1 the operator (ܫߣ −  ଵ existsି(ܤ
but it is not bounded and it may not be defined on the whole space ℓଶ(ܮଶ) or its closed 
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subspace. In fact the space ℛ(ܫߣ −  which is dense (ଶܮ)is a proper subspace of ℓଶ (ܤ
in ℓଶ(ܮଶ). For example if we take ߣ = 1 the corresponding eigenvector in ℓஶ(ܮଶ) is ࡱ = (1), 
however ࡱ ∉ ℓଶ(ܮଶ). 

The spectral analysis of the lag operator (12) provides the answers to the problem of 
solving the equation (15) with Φ(ܤ) = Δ = ܫ −  Since the unit is in spectrum of B, the .ܤ
equation (15) is an ill-posed problem. In the following chapter we will deal with the case of 
the model of the random walk and its regularization. We use the well-known Tikhonov 
regularization method. 

4 The regularization of the random walk 
We come back to the equation (1), where ܣ = Δ = ܫ −  is the difference operator and the ܤ
right hand side is a white noise. Thus the equation (1) has the form 

ܫ) − ܺ(ܤ = ℰ.                                                              (16) 

We will suppose the equation (16) in the Hilbert space ܷ = ܸ = ℓଶ(ܮଶ). The Tikhonov 
regularization method consists in the regularization of the equation (5) or (17), see below. 
Since the problem (16) is ill-posed the problem (5) so is. It follows from several non-trivial 
facts (Lukeš, 2012). The spectrum of the adjoint operator ܤ∗ is (∗ܤ)ߪ = ݖ} ∈ ℂ: |ݖ| ≤ 1}. 
Next ܣ∗ = ܫ −  and this operator has an unbounded inverse the domain of which is an open ∗ܤ
and dense subspace of ℓଶ(ܮଶ): ℛ(ܣ∗ܣ) ⊂ ℛ(ܣ∗) ⊂ ℓଶ(ܮଶ), ℛ(ܣ∗ܣ)തതതതതതതതതത = ℛ(ܣ∗)തതതതതതതത = ℓଶ(ܮଶ) and 
(ܣ∗ܣ)ࣨ = (ܣ)ࣨ = ܣ Note that the spectrum of the operator .{} = Δ = ܫ −  is only ܤ
translated spectrum of B, i.e. (ܣ)ߪ = ݖ} ∈ ℂ: ݖ| − 1| ≤ 1}. It holds ‖ܣ‖ = 2. Since ‖ܣ∗ܣ‖ =
ଶ‖ܣ‖ = 4 we obtain (ܣ∗ܣ)ߪ = [0,4]. 

The simple way how to regularize the problem 

ࢄܣ∗ܣ =  ℰ                                                            (17)∗ܣ

is to add some positive multiple of the identity. In this way we obtain an operator equation 

ܣ∗ܣ) + ࢄ(ܫߙ =  ℰ,                                              (18)∗ܣ

where ߙ > 0. The operator ܣ∗ܣ +  Hence its .(ଶܮ)is bounded with range equal to ℓଶ ܫߙ

inverse is bounded and (18) is well-posed problem. The operators 

ܴఈ = ܣ∗ܣ) +  (19)                                           ∗ܣଵି(ܫߙ

form a regularization strategy for the equation (17). If (17) has a solution ࢄ(), then the 

unique solution to (18), say ࢻࢄ
() = ܴఈℰ, is its approximation. If we replace the white noise ℰ 

in (18) by its perturbation ℰఋ, we obtain the regularized solution to (17) ࢾ,ࢻࢄ
() = ܴఈℰఋ, see (2). 

The unique solution of (18) is at the same time the unique minimum of the Tikhonov´s 

functional ܬఈ(ࢄ) = −ࢄܣ‖ ℰ‖ + ఈܬ  or‖ࢄ‖ߙ ,ఋ(ࢄ) = −ࢄܣ‖ ℰఋ‖ +   respectively‖ࢄ‖ߙ

for perturbed form of the equation (18) (replace ℰ by ℰఋ in (18)). 
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It can be seen with the help of the polar decomposition and the Riesz functional 

calculus (Lukeš, 2012) that for the operators (19) holds 

‖ܴఈ‖ ≤
1

ߙ√2
.                                                      (20) 

It gives the estimate for the ill-posedness effect in (3). As to the regularization effect we will 

suppose that the exact solution to (17) satisfies ࢄ() = ࢆ for some ࢆ∗ܣ ∈ ℓଶ(ܮଶ), in other 

words ࢄ() ∈ ℛ(ܣ∗), which can be interpreted as an assumption of certain smoothness of this 

solution. It can be easily verified (by the help of the estimate (20)) that  

ฮܴఈࢄܣ() − ฮ()ࢄ ≤ ‖ࢆ‖‖ఈܴ‖ߙ ≤
ߙ√
2
 (21)                         .‖ࢆ‖

Finally, if we substitute the estimates (20) and (21) to (2) we obtain the fundamental 

estimation (3) for Tikhonov regularization applied on the random walk in the sense of least 

squares (i.e. (18)): 

ቛࢄ() ࢾ,ࢻࢄ−
()ቛ ≤ ฮ(ܣ∗)ିଵࢄ()ฮ

ߙ√
2 +

ߜ
ߙ√2

 .                         (22) 

The first term in (22) reflects the regularization effect whereas the second one the ill-
posedness effect. We have to ballance the parameters ߙ and ߜ in such a way that ఋ

ଶ√ఈ
→ 0 for 

ߙ ↘ 0 and ߜ ↘ 0. One of the well-known strategy for the choice of ߙ is the Morozov´s 
discrepancy principle (Nair, 2009). 

Conclusion  
The polynomial operators in the equation (15) may have a unit root. It causes either non-

stationarity or non-invertibility of this model. In essential form the unit root is contained in 

the model (16). In such case the equation (15) is an ill-posed problem. Then it has to be 

solved by a regularization method if we require to obtain some reasonable solution to this 

problem. 

As the spectral analysis of the lag operator in ℓଶ(ܮଶ) shows it remains to prove the 

existence of the exact solution (in some sense) to the original problem (16) since the range of 

the difference is not closed and not equal to ℓଶ(ܮଶ); it is only dense subspace of ℓଶ(ܮଶ). 

The Tikhonov regularization method raise again the question about the 

overdifferencing of time series since the transformation of the equation (16) to its normal 

form contains in fact the second difference of the process. 
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