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DIAGNOSTICS FOR ROBUST REGRESSION: LINEAR 

VERSUS NONLINEAR MODEL                                    

Jan Kalina 

 

Abstract 

Robust statistical methods represent important tools for estimating parameters in linear as 

well as nonlinear econometric models. In contrary to the least squares, they do not suffer from 

vulnerability to the presence of outlying measurements in the data. Nevertheless, they need to 

be accompanied by diagnostic tools for verifying their assumptions. In this paper, we propose 

the asymptotic Goldfeld-Quandt test for the regression median. It allows to formulate a 

natural procedure for models with heteroscedastic disturbances, which is again based on the 

regression median. 

      Further, we pay attention to nonlinear regression model. We focus on the nonlinear least 

weighted squares estimator, which is one of recently proposed robust estimators of parameters 

in a nonlinear regression. We study residuals of the estimator and use a numerical simulation 

to reveal that they can be severely heteroscedastic also for data generated from a model with 

homoscedastic disturbances. Thus, we give a warning that standard residuals of the robust 

nonlinear estimator may produce misleading results if used for the standard diagnostic tools.  

Key words:  robust estimation, outliers, diagnostic tools, nonlinear regression, residuals 

JEL Code:  C14, C12, C21 

 

1 Robust regression 

This paper is devoted to diagnostic tools for robust regression methods in the linear as well as 

nonlinear model. Robust regression methods represent important tools for estimating 

parameters in a variety of econometric models, proposed with the particular aim to be 

resistant against the presence of outlying measurements (outliers) in the data (Ronchetti & 

Trojani, 2001; Baldauf & Silva, 2012). 

       First, we consider the linear regression model 

                                   𝑌𝑖 =  𝛽0 +  𝛽1𝑋1𝑖 + ⋯ +  𝛽𝑝𝑋𝑝𝑖 + 𝑒𝑖,   𝑖 = 1, … , 𝑛,                              (1) 
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where 𝑌1, … , 𝑌𝑛 are values of a continuous response variable and 𝑒1, … , 𝑒𝑛 are random errors 

(disturbances). The task is to estimate the regression parameters 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)𝑇 . 

Gradually, the concept of breakdown point is becoming one of crucial measures of robustness 

of regression estimators (Huber & Ronchetti, 2009), while a high breakdown point can be 

interpreted as a high resistance (insensitivity) against outlying measurements in the data.     

       The regression median (also called 𝐿1 estimator) is defined as the argument of minimum 

of the sum of absolute values of residuals in (1). It belongs to the class of M-estimators 

(Huber & Ronchetti, 2009) and represents one of the most popular estimators in the linear 

regression. However, the regression median does not have a high breakdown point. 

       The least weighted squares (LWS) represents one of robust estimators for the linear 

regression model with a high breakdown point (Víšek, 2011). The estimator has appealing 

properties like other statistical methods based on ranks of observations (Saleh et al., 2012). It 

has asymptotically a 100 % efficiency of the least squares under Gaussian errors. Its relative 

efficiency was declared to be high based on numerical simulations (Víšek, 2011), compared to 

maximum likelihood estimators under various distributional models. Extensions of the idea of 

implicit weights assigned to individual observations turn out to yield promising results also in 

other models, e.g. robust correlation coefficient (Kalina, 2012a) or classification analysis 

(Kalina, 2012b). 

     This paper has the following structure. Section 2 presents a heteroscedasticity tests for the 

regression median, namely the Goldfeld-Quandt, which is derived as an asymptotic test based 

on the asymptotic representation for the estimator. Section 3 recalls the nonlinear least 

weighted squares estimator as one of highly robust nonlinear regression estimators. Our 

example investigates residuals of this robust nonlinear estimator and brings arguments against 

using standard diagnostic tools for the nonlinear least weighted squares estimator. Finally, 

Section 4 concludes the paper.  

 

2 Goldfeld-Quandt test for regression median 

Goldfeld-Quandt is a standard test commonly used for the least squares estimator in the linear 

regression model. It considers the null hypothesis of homoscedastic disturbances, which 

reflects assumptions or a prior knowledge on the form of heteroscedasticity (Greene, 2002). 

We propose the Goldfeld-Quandt test for the regression median in Section 2.1. To remove the 

heteroscedasticity from (1), we propose a specific estimation procedure for the regression 

median in Section 2.2. 
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2.1 Asymptotic Goldfeld-Quandt test 

The Goldfeld-Quandt test (Goldfeld & Quandt, 1965) considers the null hypothesis 

                                                   𝐻0: 𝑣𝑎𝑟 𝑒𝑖 = 𝜎2,     𝑖 = 1, … , 𝑛,                                            (2)  

against the alternative hypothesis that the variance of the disturbances depends on some 

variable (or variables) in a monotone way. Formally, the alternative hypothesis  

                                                   𝐻1: 𝑣𝑎𝑟 𝑒𝑖 = 𝜎2𝑘𝑖 ,   𝑖 = 1, … , 𝑛,                                           (3) 

models the heteroscedasticity by means of given constants 𝑘1, … , 𝑘𝑛, which are (formally) 

fixed and known, although they do not influence the test itself.        

       The test is based od dividing the data to three groups according to 𝑘1, … , 𝑘𝑛, while this is 

commonly performed according to values of one of the regressors in the linear regression 

model or according to fitted values of the response. Let 𝑆𝑆𝐸1 denote the residual sum of 

squares in the first group of the data computed for the regression median and let 𝑆𝑆𝐸3 denote 

the residual sum of squares computed in the third group. Let 𝑟1 denote the number of 

observations in the first group, 𝑟3 in the third group and 𝑝 is the number of regression 

parameters in the linear regression model. 

       The asymptotic test may be based on the following theorem. Its proof is analogous to the 

theoretical reasoning of Kalina (2011), using the asymptotic representation for the regression 

median (Knight, 1998). 

Theorem 1. Let the test statistic 𝐹 of the Goldfeld-Quandt test be computed using residuals of 

the regression median. Then, the statistic 

                                                               𝐹 =
𝑆𝑆𝐸3

𝑆𝑆𝐸1
·

𝑟1−𝑝

𝑟3−𝑝
                                                           (4) 

has asymptotically Fisher’s 𝐹-distribution with 𝑟3 − 𝑝 and 𝑟1 − 𝑝 degrees of freedom under 

the null hypothesis of homoscedasticity and assuming normal distribution of disturbances. 

 

2.2 Heteroscedastic regression 

Heteroscedasticity can be removed from the linear regression model by means of a modified 

model  

                                     
𝑌𝑖

√𝑘𝑖
=  

𝛽1𝑋1𝑖

√𝑘𝑖
+ ⋯ +

𝛽𝑝𝑋𝑝𝑖

√𝑘𝑖
+

𝑒𝑖

√𝑘𝑖
,    𝑖 = 1, … , 𝑛.                                    (5)  
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This approach requires to specify the constants 𝑘1, … , 𝑘𝑛, which was not however necessary 

within the testing procedure of Section 2.1. Therefore, let us discuss the choice of suitable 

values 𝑘1, … , 𝑘𝑛 now.  

       One of typical choices is to take √𝑘𝑖 = 𝑋𝑗𝑖 for a certain 𝑗 (𝑗 = 1, … , 𝑝) and 𝑖 = 1, … , 𝑛, 

where the variance of the errors is modeled to be directly proportional to the j-th regressor. 

Other examples include 

                                 √𝑘𝑖 = √𝑋𝑗𝑖   or   √𝑘𝑖 =  �̂�𝑖  = 𝑏1𝑋1𝑖 + ⋯ + 𝑏𝑝𝑋𝑝𝑖,                               (6) 

where 𝑖 = 1, … , 𝑛. In the model (5), the regression parameters are estimated by the regression 

median and heteroscedasiticy should be tested again.  

       If the null hypothesis of homoscedasticity is not rejected in this transformed model, then 

(5) is preferable to the model (1). It holds namely under 𝐻1 that 

                            𝑣𝑎𝑟 
𝑌𝑖

√𝑘𝑖
=

1

𝑘𝑖
𝑣𝑎𝑟 𝑌𝑖 =

1

𝑘𝑖
𝑣𝑎𝑟 𝑒𝑖 =

1

𝑘𝑖
 𝜎2𝑘𝑖 = 𝜎2,     𝑖 = 1, … , 𝑛.                 (7) 

The approach (5) ensures homoscedasticity under the assumption that exactly (11) holds, 

while the true form of heteroscedasticity may deviate from (3) and may reduce its benefits. 

 

3 Robust estimation in nonlinear regression 

This section recalls the nonlinear least weighted squares (NLWS) estimator and presents 

a numerical simulation motivated by the need for diagnostic tools for the estimator. 

 

3.1 Nonlinear least weighted squares 

Let us consider the nonlinear regression model 

                                     𝑌𝑖 = 𝑓(𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝑝𝑖) + 𝑒𝑖,    𝑖 = 1, … , 𝑛,                               (8) 

where 𝑌 = (𝑌1, … , 𝑌𝑛)𝑇 is a continuous response, 

                                              𝑋𝑖 = (𝑋1𝑖, … , 𝑋𝑝𝑖)
𝑇 ,    𝑖 = 1, … , 𝑛,                                            (9) 

is the vector of independent variables observed for the i-th measurement, 𝑓 is a given 

nonlinear function and (𝑒1, … , 𝑒𝑛)𝑇 is the vector of random regression errors (disturbances). 

The model (8) can be expressed as 

                                                              𝑌𝑖 = 𝑓(𝑋𝑖
𝑇𝛽) + 𝑒𝑖.                                                    (10)  
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The aim of the analysis is to estimate the regression parameters 𝛽 = (𝛽1, … , 𝛽𝑝)𝑇.        

Nonlinear regression models have found numerous econometric applications, e.g. in the 

analysis of cross-section data or financial time series (Chang et al., 2002). 

       The most common estimator of parameters in the nonlinear model (1) is the nolinear least 

squares (NLS) estimator defined as the argument of 

                                                      min ∑ (𝑌𝑖 − 𝑓(𝑋𝑖
𝑇𝑏))

2
𝑛
𝑖=1                                                   (11) 

over all possible values of  

                                                         𝑏 = (𝑏1, … , 𝑏𝑝)𝑇 ∊ ℝ𝑝.                                                  (12) 

          Using the NLS estimator should be accompanied by verifying its assumptions and its 

diagnostic tools are well known (Seber & Wild, 2003). Neverthless, the estimator suffers from 

a high vulnerability with respect to the presence of outliers in the data. While various robust 

regression estimators (Huber & Ronchetti, 2009) are available for the linear regression model, 

most of them do not allow to be extended to the nonlinear model (8). 

         The principle of the LWS estimation can be extended to the nonlinear model. Then, let 

us call the estimator as the nonlinear least weighted squares (NLWS). In order to give the 

formal definition of the NLWS estimator, we will use the notation 𝑢(𝑖)(𝑏) for the residual 

corresponding to the i-th observation for a given estimator (12) of 𝛽. We consider the 

residuals arranged in ascending order in the form  

                                                       𝑢(1)
2 (𝑏) ≤ ⋯ ≤ 𝑢(𝑛)

2 (𝑏).                                                  (13) 

 We define the least weighted squares estimator of the parameters in the model (20) as  

                                                        𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑤𝑖𝑢(𝑖)
2 (𝑏),𝑛

𝑖=1                                                 (14) 

where the argument of the minimum is computed over all possible values of 𝑏 = (𝑏1, … , 𝑏𝑝)𝑇 

and where 𝑤1, … , 𝑤𝑛 are magnitudes of weights determined by the user. 

       The arguments for the high robustness of the LWS estimator with respect to outliers are 

valid also for the NLWS estimator thanks to the construction of the estimator, i.e. it can be 

explained as a consequence of the implicit weights assigned to individual observations An 

approximative algorithm for the computation of the NLWS estimator can be used in a direct 

analogy to the available LWS algorithm. 
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      Just like the least squares estimator and other regression estimators (including the LWS), 

the NLWS estimator assumes i.a. uncorrelated and homoscedastic disturbances. Therefore, it 

is important to have tests for verifying these two assumptions. They will be based on 

residuals, which are defined as (𝑢1, … , 𝑢𝑛)𝑇, where 

                                      𝑢𝑖 = 𝑌𝑖 − 𝑓(𝑋𝑖
𝑇�̂�) = 𝑌𝑖 − �̂�𝑖,     𝑖 = 1, … , 𝑛,                                    (15) 

where �̂�1, … , �̂�𝑛 are fitted values computed using the NLWS estimator. Possible weighting 

schemes include linearly decreasing weights or weights generated by a non-increasing 

function, such as a logistic curve. 

       

3.2 Simulation 

We randomly generate 70 observations following the Gompertz curve model 

                                 𝑌𝑖 = 𝛽1 + 𝛽2𝑒𝑥𝑝{𝛽3 + 𝑒𝛽4𝑥𝑖} + 𝑒𝑖,     𝑖 = 1, … , 𝑛,                                (16)                    

to illustrate the performance of the NLWS estimator with 𝛽 = (2, 1.5, −1, −1)𝑇 . The 

disturbances are generated as independent identically distributed random variables following 

a normal distribution 𝑁(0, 𝜎2) with 𝜎 = 0.05. Figure 1 contains the plot of the response 

depending on the single regressor. The Gompertz growth curve is known as a model suitable 

e.g. for modeling of economic growth or as a consumption curve. 

       We used the NLWS estimation with linearly decreasing weights to estimate regression 

parameters of the model (16) based on the simulated data set. The estimated values, which are 

shown in Table 1, are close to the true values of the parameters. Figure 2 reveals however 

a controversial property of the residuals. The horizontal axis shows fitted values of the 

response, obtained as   

                                     �̂�𝑖 = 𝑏1 + 𝑏2𝑒𝑥𝑝{𝑏3 + 𝑒𝑏4𝑥𝑖},     𝑖 = 1, … , 𝑛,                                    (17) 

where (𝑏1, 𝑏2, 𝑏3, 𝑏4)𝑇 denotes the NLWS estimate of (𝛽1, 𝛽2, 𝛽3, 𝛽4)𝑇 . The vertical axis 

shows the residuals of the NLWS estimate. We can see that residuals depend heavily on the 

fitted value of the response. In other words, their variability depends on the shape of the 

nonlinear function 𝑓. On the other hand, the random errors in (16) were constructed as 

homoscedastic, i.e. independent on the value of the response. Besides, we need to point out 

that the NLWS estimator is biased (just like the NLS), which makes the residuals not to be 

centered around zero. Particularly, the mean of the NLWS residuals is 0.015 in our example. 
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Fig. 1: Data set from Section 3.2. The data are randomly generated following the 

Gompertz growth model. The horizontal axis shows the regressor uniformly distributed 

over [-2.5, 4.5]. The vertical axis shows the response generated using (16). 

 

 

Source: own computation 

Tab. 1: True and estimated values of parameters for data in Figure 1. The estimate is 

obtained by the NLWS with linearly decreasing weights. 

Parameter True value NLWS estimate Standard error of the 

NLWS estimate 

𝛽1 2 1.98  0.012 

𝛽2 1.5 1.54 0.018 

𝛽3 -1 -0.96 0.027 

𝛽4 -1 -0.92 0.035 

Source: own computation 

 

       We may conclude from Figure 2 that the (standard) residuals are not adequate for testing 

heteroscedasticity for the NLWS estimator. This is in accordance with the recommendations 

of Cook & Tsai (1985), who discouraged from using diagnostic tests for the nonlinear least 

squares. 
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Fig. 2: Illustration of the controversial behavior of residuals of the NLWS regression. 

The horizontal axis shows fitted values of the response (17) and the vertical axis the 

(standard) residuals (15). 

 

Source: own computation 

 

4 Conclusions 

This paper is devoted to diagnostics for two robust estimators, namely the regression median 

for the linear regression model and for the nonlinear least weighted squares estimator.  

     In the linear regression, we derived an asymptotic Goldfeld-Quandt test of 

heteroscedasticity for the regression median estimator. It is valid asymptotically in the same 

form as it is routinely used for the least squares. While the test is exactly valid (i.e. for a small 

number of observations) for the least squares, it can be recommended for the regression 

median for a large number of observations. In addition, other diagnostic tests could be derived 

for the residuals of the regression median, including White test or tests of the Szroeter’s class. 

Nevertheless, deriving the tests requires to assume the normal distribution of the disturbances, 

which limitates the new tools, because under normality without outliers the regression median 

loses its efficiency compared to the least squares.  

     In the nonlinear regression, however, the situation is much more complex. We illustrated 

the intricate properties of residuals of the nonlinear least weighted squares on simulated data. 

The results on the data reveal that the residuals are far from homoscedasticity, even if the 

assumption of homoscedastic disturbances in the regression model is fulfilled. Thus, we find 



The 10
th

 International Days of Statistics and Economics, Prague, September 8-10, 2016 

789 
 

residuals to be unsuitable for making conclusions about the disturbances (random errors). 

While tests from the linear regression are no longer valid for the NLWS estimator, we do not 

recommend to use residuals even for a subjective diagnostics concerning the disturbances. 

       Important limitations of the robust nonlinear estimation include a non-robustness to the 

specification of the alternative hypothesis for the heteroscedasticity tests as well as 

specification of the nonlinear function 𝑓 in the model (Baldauf & Silva, 2012). 

       On the whole, constructive results of this paper may allow the robust methods to become 

more popular in econometric applications. On the other hand, we must admit that available 

robust regression methods still suffer from serious shortcomings for several main reasons: 

 They require various tuning constants with a difficult interpretation; 

 Various robust methods yield rather different results; 

 Computational intensity; 

 Robustness only with respect to outliers but not to a misspecification of the model.  
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