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Abstract 

The systemic risk is undoubtedly an important concept employed in the framework of modern 

risk regulatory systems as are Basel III in finance or Solvency II in insurance. This 

contribution primarily concentrates on a particular quantitative approach to measuring the 

systemic risk, which seems to be a significant risk in today's financial world (not solely in 

banks and insurance companies). The marginal expected shortfall measure is based on the 

well-known concept of the expected shortfall. More specifically, it can be regarded as 

a conditional version of the expected shortfall in which the global returns exceed a given 

market drop. We shall demonstrate that the marginal expected shortfall is a useful risk 

measure when studying the Prague Stock Exchange index and all its constituents. The 

corresponding modelling scheme is introduced and discussed. It is extended in such a way 

that one can describe time-varying dependencies using the multivariate GARCH modelling 

class. Moreover, such an econometric approach enables to forecast the capital shortfall over a 

potentially long period (e.g. a quarter or half year), which might be appreciated in financial 

and insurance practice. 
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Introduction 

The systemic risk seems to be a highly significant risk in today’s financial world. It has been 

more frequently regulated since the previous financial crises demonstrated various 

weaknesses in the global regulatory framework and banks’ risk management practices. The 

paper deals with a specific quantitative approach to measuring the systemic risk, when 

portfolio scheme is applicable (e.g. particular firms comprising a stock index may present a 

systemic risk, when aggregate capital drops below a given threshold). 
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One can examine various quantitative aspects of systemic risk with many references in 

research and applied literature and calculation outputs in financial practice. Acharya, Engle, 

and Richardson (2012) developed a simple model in which a group of banks set leverage 

levels and choose asset positions in a broader economic environment with systemic risk 

emerging, when aggregate bank capital drops below a given threshold. Billio, Getmansky, Lo, 

and Pelizzon (2012) proposed several econometric measures of systemic risk to capture 

interconnectedness among the monthly returns of hedge funds, banks, brokers, and insurance 

companies. A component expected shortfall approach to systemic risk was suggested in 

Banulescu and Dumitrescu (2015). Another popular approach to systemic risk is based on the 

concept of CoVaR, which measures changes in the system’s Value at Risk, when one 

particular institution is under financial stress as measured by its own individual Value at Risk 

(Adrian & Brunnermeier, 2008). 

This paper concentrates just on the quantitative aspects of systemic risk, in particular, 

on measuring the systemic risk in a portfolio context. Principally, there are two ways of 

evaluating the contribution of a given firm to the overall risk of the system (Benoit, Colletaz, 

Hurlin, & Pérignon, 2013). The first (supervisory) approach relies on firm-specific 

information (size, leverage, liquidity, interconnectedness, substitutability, and others) and 

uses data provided by the financial institution to the regulator. The second approach relies on 

publicly available market data (stock returns, CDS spreads, and others) since such data are 

believed to reflect all information about publicly traded firms. In both cases one must apply a 

suitable measure of the corresponding systemic risk. This contribution primarily focuses on 

the second described case when applying the marginal expected shortfall MES measure, 

which represents one of the most common systemic risk measures. It can be regarded as 

a conditional version of the expected shortfall in which the global returns exceed a given 

market drop (Benoit et al., 2013). 

The paper is organized as follows. Section 1 introduces the concept of marginal 

expected shortfall MES and discusses the typical model situation, when one applies this 

instrument for systemic risk analysis of a firms’ portfolio. Section 2 investigates the systemic 

risk of stocks of key companies composing the index PX of Prague Stock Exchange. 

 

1 Modelling marginal expected shortfall 

Marginal expected shortfall MES is based on the well-known concept of the expected shortfall 

ES (the ES at level  is the expected return in the worst  × 100% of the cases). The expected 
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shortfall is usually preferred among risk measures in today’s financial practice due to its 

coherence and other properties giving to it preferences in comparison with classical measures 

such as Value at Risk (Artzner, Delbaen, Eber, & Heath, 1999). 

To describe MES in a simple way, we shall use the following model situation (Benoit 

et al., 2013): Let us consider N firms and denote rit the return of firm i at time t. The 

corresponding market return rmt at time t is defined as follows: 
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where wit is the relative market capitalization of firm i at time t. The modification of ES to the 

MES is based on conditioning ES in which global returns exceed a given market drop C < 0: 
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One must understand the symbols MESit(C) and ESmt(C) conditionally at time as MESi,tt1(C) 

and ESm,tt1(C), i.e. computed at time t given the information available at time t  1. 

Therefore, the marginal expected shortfall measures the increase in the risk of the system 

(measured by the ES) induced by a marginal increase in the weight of firm i in the system. 

The higher is MES of the firm, the higher is the individual contribution of the firm to the risk 

of the financial system (Scaillet, 2005). 

Various modelling alternatives for the MES calculation have been proposed in 

literature. We shall deal with the MES in the framework of the simple econometric model 

supplemented in such a way that one can model time-varying dependencies using the 

multivariate DCC-GARCH modelling class. Moreover, such an econometric method enables 

to estimate the capital shortfall over a potentially long period (e.g. a quarter or half year), 

which is surely useful in common financial practice (Cipra & Hendrych, 2017). 

The final model (e.g. for a whole portfolio of stocks composing an exchange index) can 

be explained by means of bivariate conditionally heteroskedastic models, which characterize 
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the dynamics of the daily firm and market returns. To be more specific, let rmt and rit denote 

the market and i-th firm log returns on day t. The bivariate process of the daily market and i-th 

firm returns is modeled as 
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where the shocks (mt, ζit) are independent and identically distributed over time with zero 

mean, unit variance and zero covariance. A mutual independence of these shocks is not 

assumed. On the contrary, there are reasons to believe that extreme values of disturbances mt 

and ζit interact (when the market is in its tail, the firm disturbances may be even further in the 

tail if there is a serious risk of default). 

The stochastic specification is completed by a description of the two conditional 

standard deviations and the conditional correlation. These quantities can be formulated as 

follows: Applying the principles of conditional heteroskedasticity, the volatility is modeled by 

means of the simplest threshold GJR-GARCH(1,1) model as 
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with 1, 


tmI for 0mtr  and 0 otherwise, 1, 


tiI for 0itr  and 0 otherwise. According to the 

applied threshold modification, the model can cover the leverage effect, i.e. the tendency of 

volatility to increase more after observing negative news rather than positive ones. 

The time-varying correlations are captured by using the asymmetric dynamic 

conditional correlation ADCC(1,1) modelling scheme (Engle, 2009). Let Rt denote the time-

varying correlation matrix of the market and firm return. We shall assume that 
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where 
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where the matrix operator diag(•) creates a diagonal matrix by extracting diagonal elements of 

the input matrix, ΩQ is a (2×2) symmetric positive definite intercept matrix, AQ, BQ, and CQ 
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denote the (2×2) matrices of parameters, εt
*
 = diag(Dt)

-1/2(rmt, rit)
T are “degarched” financial 

returns, and finally εt
**

 = min(0, εt
*). All cross products of εt

** elements will be nonzero only if 

both multiplied components are negative. Therefore, the model allows that dynamic 

correlations may be different for negative financial returns from the ones for positive ones. 

Note that the matrix Qt is symmetric and positive definite by construction. For simplicity, one 

may assume that the matrices AQ, BQ, and CQ are diagonal. Particularly, we shall put 

AQ = αQ I with some αQ ≥ 0, BQ = βQ I with some βQ ≥ 0, and CQ = γQ I with some γQ ≥ 0, where 

I denotes the (2×2) identity matrix. Model estimation, properties, and other related issues are 

studied in literature, e.g. by Engle (2009) and in the works cited therein. 

From the practical viewpoint, the model should enable to construct predictions in order 

to find the future capital shortfall. The one-period ahead MES can be expressed as a function 

of volatility, correlation, and tail expectation of the standardized innovations distribution: 
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where the conditional probability of a systemic event is defined as 
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The conditional tail expectation Et-1(ξit|εmt < C / σmt) in the expression (10) captures the 

tail spillover effects from the financial system to the financial institution (firm) that are not 

captured by the conditional correlation. Assuming that innovations mt and ζit are i.i.d., the 

nonparametric estimates of the tail expectations in (10) can be obtained as (Chen, 2008): 
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(12) 

where T denotes the sample size and I[•] is the binary indicator of an event •. Alternatively, 

nonparametric kernel methods might be considered to estimate the tail expectations. Finally, 

the threshold C < 0 characterizing the systemic event is given, e.g. as the unconditional or 

conditional Value at Risk of rmt. 

Alternatively, the simple historical one-period ahead MES can be used as a simple 

benchmark (Brownlees & Engle, 2012). It is given directly as 
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where the positive integer M is the width of moving window. This estimator is inspired by the 

financial practice, where various rolling window averages are commonly used. 

Note that different modelling strategies would be introduced in order to predict MES. 

Particularly, distinct modelling specifications for calculating volatilities and correlations 

given by the formulas in (6)-(9) could be considered. For calculating multi-period predictions 

of MES, consult e.g. Cipra and Hendrych (2017) or Brownlees and Engle (2012). 

 

2 Marginal expected shortfall: The Czech PX index case study 

This section presents a case study of the Prague Stock Exchange (PX) index constituents. In 

order to calculate the marginal expected shortfall for each involved firm, we shall implement 

a (partly) modified estimation method originally considered by Brownlees and Engle (2012). 

More precisely, we shall follow the modelling framework introduced in Section 1. The 

conditional volatilities σmt and σit are modeled by the GJR-GARCH(1,1) scheme given by (6). 

The time-varying conditional correlations ρit are described by means of the asymmetric DCC 

model fully specified by (7)-(9). The model is estimated in two consecutive steps by applying 

quasi maximum likelihood similarly as it is performed in Engle (2009). Given estimated the 

above-mentioned quantities, the marginal expected shortfall and the conditional probability of 

a systemic event are then computed by (10), (11), and (13), respectively. 

We shall analyze the panel of companies constituting the PX index basis. The panel 

contains fourteen firms, which were incorporated into the PX index basis according to their 

market capitalization as of the end of June 2008. This panel is unbalanced in that sense that 

not all companies have been continuously traded during the sample period. We extracted the 

daily logarithmic returns from January 6, 2000 to May 9, 2016. The full list of institutions 

involved in our study is reported in Cipra and Hendrych (2017). 

Figure 1 displays the estimated conditional probability of systemic event POS as it 

was given in (11). Point out that the threshold C was set as the 1% unconditional Value at 

Risk of the PX index log returns. At the first sight, the estimated POS is evidently very high 

during the financial crisis. Figure 2 shows the estimated one-step ahead MES evaluated 

according to (10) or (13) with the rolling window width M = 250. Accordingly, all one-step 
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ahead MES values calculated by (10) are also excessive during the financial crisis period. 

Nevertheless, high one-step ahead MES values occur also in other time instants, see e.g. O2 

(the company split observed in 2015) or Unipetrol (in 2005 and 2006). It should be 

highlighted that the Philip Morris returns indicate the lowest average one-step ahead MES 

overall, i.e. this comparation shows the firm stability. Finally, the MES computed by (13) 

evidently does not represent a suitable measure of systemic risk. For instance, as can be seen 

from Figure 2, during the years 2012-2015 the historical one-period ahead MES predictions 

are mostly zero due to absence of any systemic event declared by the threshold C. It is in 

sharp contrast to the MES forecasts obtained by (10). Information delivered by such an 

analysis of MES can be applied e.g. by investors to optimize their portfolio or by regulators to 

initiate a relevant action. One should remind that some drawbacks of the Czech stocks market 

(e.g. low liquidity) might bring some distortions into the previous results. 

As the methodology used is concerned, Brownlees, Engle, and Kelly (2011) jointly 

with other works cited therein explored the performance of volatility forecasting by exercising 

it on a wide range of domestic and international equity indices and exchange rates. It was 

concluded that the simplest GARCH specification similar to our approach is the most often 

the best forecaster of future risk when studying various financial asset classes with different 

volatility regimes. 

 

Fig. 1: Estimated probability of a systemic event POS of the PX index 
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Source: Authors (by Eviews 8.0) 
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Fig. 2: MES estimates calculated by (10) and (13) for the PX index constituents 
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Conclusion 

The paper was focused on a special quantitative approach to the systemic risk, which seems to 

be a significant type of risk in today’s financial world. We have slightly modified the 

common modelling framework used for estimating the marginal expected shortfall and the 
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conditional probability of systemic event occurrence. In particular, we have considered the 

GJR-GARCH(1,1)-ADCC(1,1) model, which respects the character of financial returns more 

properly. The introduced modelling strategy has enabled to forecast the capital shortfall (over 

a potentially long time horizon), which could be useful in financial practice (e.g. for portfolio 

managers, regulators, brokers, etc.). This methodology was applied in Section 2 in the case 

study of the portfolio of PX index constituents with discussion of obtained results. One could 

identify that the conditional probability of systemic event was excessively high during the 

financial crisis period and that the MES of individual firms reflected both the market situation 

and key firm’s events (e.g. splits, acquisitions, restructurings, etc.). It was shown that the 

rolling-window MES evaluated according to (13) is not competitive with the preferred 

approach (10), which calculates the marginal expected shortfall using more sophisticated 

econometric models of financial returns. 
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