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Abstract 

The aim of this paper is to construct a classification rule for predicting the best regression 

estimator for a new data set based on a database of 20 training data sets. Various estimators 

considered here include some popular methods of robust statistics. The methodology used for 

constructing the classification rule can be described as metalearning. Nevertheless, standard 

approaches of metalearning should be robustified if working with data sets contaminated by 

outlying measurements (outliers). Therefore, our contribution can be also described as 

robustification of the metalearning process by using a robust prediction error. In addition to 

performing the metalearning study by means of both standard and robust approaches, we 

search for a detailed interpretation in two particular situations. The results of detailed 

investigation show that the knowledge obtained by a metalearning approach standing on 

standard principles is prone to great variability and instability, which makes it hard to believe 

that the results are not just a consequence of a mere chance. Such aspect of  metalearning 

seems not to have been previously analyzed in literature. 
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Introduction 

Metalearning is a popular methodology for the task to learn knowledge over a training 

database and apply it to new independent data sets. In other words, the training data sets are 

discarded and only a set of their features (called metadata) is retained and used. The training 

data sets serve as a prior which can be incorporated to analyzing new data sets. We refer to 

Vilalta et al. (2004) or Suh (2012) for a very detailed overview of metalearning. Practical 

issues of metalearning have been discussed in the machine learning community (particularly 

in the field of automated statistical learning) and applied to various tasks of optimization, 

computer science, and data mining (Kordík et al., 2010). 
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While metalearning originated in the seminal paper (Rice, 1976) and its principles and 

appealing properties have been repeatedly appraised (Smith-Miles, 2014), its truly critical 

evaluation seems to be still missing. It si the fully automatic character of the metalearning 

process (without a detailed interpretation) which hinders a profound interpretation of the 

results, which would be standard in the statistical community. The field of computer science 

however finds heuristics and black box procedures more appealing. 

The aim of this paper is to extend the metalearning study of Kalina & Peštová (2017) 

to a robust version exploiting also a robust measure of prediction error. The results are 

presented with a detailed interpretation in two particular situations. While an experienced 

practitioner would trust the results without a deeper analysis, we show that the seemingly 

optimistic result is obtained by a mere chance, while failing in separating noise from signal. 

Actually, the result down-weights the role of signal and builds conclusions from noise. 

Section 1 of this paper recalls principles of robust statistical estimation in the linear 

reression model. A study comparing the prediction performance of several common linear 

regression estimators (standard and robust) over 20 real data sets is presented in Section 2. 

Results of our study are included in Section 3. However, some results are demonstrated as 

controversial in a detailed analysis in Sections 4 and 5.  

 

1 Robust regression 

It is well known that robust estimators of parameters are more suitable compared to the least 

squares, if observations in the standard linear regression model 

                            𝑌𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ +  𝛽𝑝𝑋𝑖𝑝 + 𝑒𝑖,   𝑖 = 1, … , 𝑛,                                     (1) 

are contaminated by outliers. Here, a continuous response 𝑌 is assumed together with the total 

number of 𝑝 regressors (independent variables) and random errors 𝑒1, … , 𝑒𝑛. In this paper, we 

work with several robust alternatives of the least squares. All of them are reliable for data 

more or less contaminated by outliers for theoretical reasons as well as according to empirical 

evidence (Kalina, 2012; Jurečková et al., 2013).  

Particularly, we work with Huber‘s or Hampel‘s M-estimators which are the most 

commonly used robust methods (Hampel et al., 1986). Because they do not possess a high 

breakdown point which has become of one fundamental robustness measures, we work also 

with the least trimmed squares (LTS) estimator of (Rousseeuw & Leroy, 1987), which is 

perhaps the most popular example of highly robust estimators. 
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The novelty of this paper is exploiting a robust evaluation of the prediction error in the 

search for the most suitable robust estimator. We attempt to perform a systematic comparison 

of the performance of various estimators using a trimmed version of the mean square error, 

similarly with Beck et al. (2006). Our robust metalearning approach extracts information from 

a database of training data sets with a larger or smaller level of contamination. 

 

3 Design of the metalearning study 

We proposed and performed a metalearning study with the aim to compare various linear 

regression estimators and to find a classification rule allowing to perform a robust prediction 

of the best one for a given (new) data set. It remains also an open question which features 

(variables) are the most relevant criteria for determining the most suitable robust method. 

The primary learning task is to fit various linear regression estimators for each of the 

given data sets. The best estimator is found using a robust characteristic of a goodness of fit. 

The subsequent metalearning part has the aim to learn a classification rule allowing to predict 

the best regression method for a new data set not present in the training database. Its input 

data are only selected features of individual data sets together with the result of the primary 

learning, i.e. an index of the best method for each of the training data sets. 

The user of metalearning must specify a list of essential components (parameters), 

which have been systematically described by Smith-Miles et al. (2014) and denoted 

(abbreviated) as P, A, F, Y, and S. Components designated as Problem (P), Algorithms (A) 

and Performance (Y, i.e. prediction measure) are used in the task of primary learning (base 

learning), while Features (F) and Selection mapping (S, i.e. metalearning method) in the 

subsequent metalearning. Their meaning and our specific choices will be now described. 

 

3.1 Primary learning 

The data sets (P) in metalearning should be always real data sets, because any random 

generation of data is performed in a too specific (i.e. non-representative, biased) way. We 

work with 20 publicly available data sets coming from Kalina & Peštová (2017); here 

however we limit the database to data sets which have at least roughly comparable sizes. All 

these data sets have an available documentation, which reveals that linear regression is 

a suitable model and that the data have undergone standard pre-processing (cleaning, 

transformations of variables). Only continuous regressors are used and all observations with 

any missing value are deleted. The standard linear model (1) is considered for each data set. 
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Algorithms (A) are used as four different regression estimators: 

 Least squares, 

 Huber's M-estimator (Hampel et al., 1986), 

 Hampel's M-estimator (Hampel et al., 1986), 

 Least trimmed squares (LTS) with two choices of the trimming parameter ℎ, where 

smaller ℎ (closer to 0.5) is suitable for a larger data contamination by outliers (Rousseeuw 

& Leroy, 1987; Víšek, 2006). We use ℎ as the integer part of 3𝑛 4⁄  or integer part of 𝑛 2⁄ ; 

we refer to Kalina (2015) for a deeper discussion of choosing suitable h for the LTS.    

Except for the least squares, all these estimators are robust. However, robust statistics 

distinguishes between local and global robustness (resistance, insensitivity). While Huber's 

and Hampel's M-estimators are robust in the local sense, only the LTS estimator is highly 

robust in the global sense, i.e. to outliers. We may refer to Hampel et al. (1986) or Víšek 

(2006) for a deeper explanation of the concepts, which are to a large extent contradictory.  

Prediction measure (Y) is considered in the form of the mean square error (MSE) or its 

robust counterpart known as the trimmed mean square error (TMSE), defined as 

                                     𝑀𝑆𝐸 =
1

𝑛
∑ 𝑢𝑖

2𝑛
𝑖=1 ,   𝑇𝑀𝑆𝐸(𝛼) =

1

𝑛
∑ 𝑢(𝑖)

2𝑘
𝑖=1 ,                                     (3) 

where prediction errors are denoted as 𝑢𝑖 = 𝑌𝑖 − �̂�𝑖 (for 𝑖 = 1, … , 𝑛), �̂�𝑖 are fitted value of the 

𝑖-th observation (in each of the data sets), 𝑘 is integer part of 𝛼𝑛, 𝛼 ∊ [0.5,1) is a fixed 

constant (ensuring 𝑛 2 ≤ 𝑘 ≤ 𝑛⁄ ), and 𝑢(1)
2 (𝑏) ≤ 𝑢(2)

2 (𝑏) ≤ ⋯ ≤ 𝑢(𝑛)
2 (𝑏) are arranged values.        

In the primary learning task, we find the best method for each data set using  MSE or 

TMSE with a specified α in a leave-one-out cross validation, which represents a standard 

attempt for an independent validation. Then, the output of the primary learning is the 

knowledge (i.e. factor variable, index) of the best method for each of the data sets. 

 

3.2  Metalearning 

We use 10 features of data sets (F). These include all the 9 features used by Kalina & Peštová 

(2017) and additionally we use the Donoho-Stahel outlyingness measure of all the regressors 

as the last feature. Metalearning method (S) is used as one of the 3 following classifiers: 

 A linear support vector machine (SVM) classifier, 

 Linear discriminant analysis (LDA), 

 𝑘-nearest neighbors for 𝑘 = 3. 
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4  Results  

For the primary learning, Table 2 shows the best method for each of the data sets. The best 

method is evaluated by means of MSE in columns (a) to (c), TMSE(0.9) in columns (d) to (f), 

and TMSE(0.5) in columns (g) to (i). Here, we also exploit the effect of merging some 

estimators to reduce the number of considered groups. Thus, the classification is considered to  

 5 groups (in columns a, d, g),  

 3 groups (in columns b, e, h) obtained by merging Huber’s and Hampel’s estimator 

together and merging the LTS estimators with both values of ℎ together, 

 2 groups (in columns c, f, i) obtained by merging the least squares with M-estimators 

together and merging the LTS estimators with both values of ℎ together. 

We consider the merging useful, because it allows to interpret if a highly robust method is 

desirable or not, or if the least squares estimator is suitable or not, while the approach with 

5 groups further specifies also a more delicate classification.  

The subsequent metalearning task starts with  classifying the 20 training data sets to 

one of the 5 groups using the 10 selected features. The results of metalearning are overviewed 

in Table 1, namely as classification performances of the classification rules learned within the 

metalearning tasks. There, the performance is evaluated as a classification correctness in 

a leave-one-out cross validation study, which is performed as a common attempt for 

an independent validation.  

The first row of the table presents results with all 10 features for the standard 

prediction error MSE and also for its two robust versions. The presented value is the best 

among the 3 considered classifiers, which were listed under (S) above. The best result with 

10 features and all 5 groups is 0.47 obtained with TMSE(0.9). We also exploit the effect of 

merging some estimators to reduce the number of considered groups of estimators. Thus, we 

consider a classification task not only to 5 groups, but also to 3 or 2 groups constructed after 

merging the estimators as described in the introduction of Section 3. 

If all 10 features are used, the best result is 0.67 with TMSE(0.9) and only 2 groups. 

Further, we investigated the classification with only a subset of the features. We investigated 

the classification performance for all possible subsets of the 10 features. We can see that the 

classification performance is able to increase (even remarkably) if some of redundant features 

are ignored. We can see that the best result is 0.86 obtained with TMSE(0.5) or TMSE(0.5) 

but with only 2 features. These will be interpreted in the next section. Let us now also state 

that the best classifier is sometimes LDA and sometimes SVM, but the 𝑘-nearest neighbors 
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classifiers suffer from the most dramatic loss of performance, although the method is very 

common (perhaps the most common) in the metalearning task. 

 

5 A more detailed interpretation I 

We pay closer attention to interpretation of the results presented in Section 4. We simplify the 

situation as much as possible and have a closer look at two particular results of Table 1. We 

use TMSE(𝛼) with 𝛼 = 0.5 and classification to 2 groups with 1 variable. Then, the 

classification performance is equal to 0.71 with LDA. 

The result is obtained with best single variable, which is the 𝑝-value of the Breusch-

Pagan heteroscedasticity test, which will be denoted as 𝑝𝐵𝑃. The classification rule of LDA 

can be interpreted this way: the LTS is the best method for the particular data set if and only if 

𝑝𝐵𝑃-value is smaller than 0.4. We point out that a 𝑝-value in general is not constructed to be 

compared with the value 0.4. Actually, its distribution under homoscedasticity is uniform over 

(0,1). In addition, 𝑝𝐵𝑃 also depends on the size of the data set and is also sensitive to 

violations of normality. The relatively high classification accuracy is attained thanks to a non-

balanced situation, as there are 13 data sets (i.e. 62 %) for which the LTS is the best method. 

85 % of them have 𝑝𝐵𝑃 < 0.4. Out of the remaining 8 data sets, 4 have 𝑝𝐵𝑃 < 0.4, because 

they are very small (although not ideally homoscedastic) and the other half has 𝑝𝐵𝑃 > 0.4, 

which are not so small but are nicely normal. Roughly speaking, the result is attained only by 

a mere chance but is not contraintuitive, because for data not extremely nice in terms of 𝑝𝐵𝑃, 

the LTS is predicted as the best method. 

 

6 A more detailed interpretation II 

We use TMSE(𝛼) with 𝛼 = 0.9 and classification to 2 groups with 1 variable. Then, the 

classification performance is equal to 0.86 with LDA. The result is obtained with best single 

variable, which is the 𝑝-value of the Shapiro-Wilk normality test denoted as 𝑝𝑆𝑊. LDA 

predicts the LTS to be the best method for a particular data set if and only if 𝑝𝑆𝑊 > 0.695. 

This is contraintuitive, because contaminated data sets should have actually rather smalle 

values of 𝑝𝑆𝑊. Still, the result is correct as we now explain. There are 8 data sets (i.e. 38 %) 

for which the LTS is the best method. Out of them, 3 data sets have 𝑝𝑆𝑊 < 0.695, because 

they are contaminated by outliers, and 5 have 𝑝𝑆𝑊 > 0.695, because they are very small and 

the test has a very low power. Out of the remaining data sets, 92 % has 𝑝𝑆𝑊 < 0.695; these 

data sets are not very contaminated but not extremely nicely normal. 



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

1373 
 

This section does not discredit metalearning, but reveals its single dangerous aspect. If 

there are more features and many of them are only noise, the same effect may happen that the 

noise prevail over the signal. Then, the classification rule of metalearning may come in 

an extreme situation to a contraintuitive result if not closely investigated and interpreted. 

 

Conclusion 

Metalearning can be characterized as a popular tool in various tasks, however typically used 

in a form which is vulnerable to outliers. Here, we attempt to perform the metalearning task of 

extracting information from training data sets by means of a robust measure of prediction 

error. The acquired knowledge is further applied on new data sets. While the results allow to 

predict the most suitable robust regression estimator for a given data set, a detailed analysis 

illustrates rather controversial results, which have not been described in references. 

The metalearning study performed in the context of robust estimators in linear 

regression brings new useful knowledge about suitability of robust estimators for various data 

sets. Although a lot of effort was invested to a study of properties or even optimality of robust 

regression estimators, there seem no theoretical results allowing to predict which of the 

considered estimators is the most suitable for a particular data set. Nor it is clear which are the 

main criteria for predicting the most suitable estimator. Therefore, this paper resorts to 

a metalearning study, which is performed in the spirit described by various references (Smith-

Miles et al., 2014). Particularly, we performed a metalearning study investigating the 

prediction performance of robust regression estimators and to compare them on 20 carefully 

selected real data sets with different properties and coming from different fields. Our 

approach stands is actually unique in the context of robust linear regression. 

First, a direct comparison of the prediction performance of individual estimators 

shows that there is no single method uniformly better than all remaining ones. For MSE, the 

least squares estimator performs as the most reliable estimator, while M-estimators are the 

winner for TMSE(0.9) and the LTS is the best estimator if TMSE(0.5) is used. For the last 

case, the very robust measure prefers a highly robust method. To be more precise, a measure 

robust to severe outliers prefers an estimator again robust to severe outliers, while major 

disadvantages of the estimator (low efficiency or local sensitivity) are not revealed. The LTS 

performs in a very different way from the remaining estimators, i.e. the differences between 

least squares and M-estimators are relatively small. Robust versions of the prediction error 

also allow actually to improve the classification performance compared to MSE. 
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On the whole, several ideas allowed to improve remarkably the classification 

performance obtained with 10 features, 5 groups and MSE, which equals to 0.10. 

Improvement was acquired with reducing the number of features, reducing the number of 

groups (estimators), and using a robust counterpart of MSE. The best classification 

performance is improved to 0.86, which seems already very reliable and a standard 

metalearning procedure would be finished with announcing this seemingly promising result. 

Further, a unique interpretation of metalearning results is presented in the paper. Our 

detailed analysis in two special cases shows that the were caused by a mere chance, are overly 

optimistic and do not make sense. Such contra-intuitive result appears here in a rather extreme 

situation with the metalearning based on a single best feature. In practice, one would 

definitely use more feature than one, but such a phenomenon may occur also in the 

multivariate case. To support this claim, it is sufficient to accompany the single variable with 

other variables which are completely random. Relying of results of the fully automated 

metalearning process without any attempt for a critical evaluation of results may thus be 

considered a weak (but common) strategy not having been reported in literature. 
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Tab. 1: Results of metalearning evaluated as the ratio of correctly classified cases in 

a leave-one-out cross validation study. 

Number of 

features 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

10 0.10 0.43 0.43 0.43 0.57 0.67 0.33 0.62 0.62 

9 0.33 0.52 0.57 0.52 0.71 0.71 0.33 0.62 0.76 

8 0.43 0.52 0.67 0.48 0.76 0.76 0.33 0.71 0.86 

7 0.48 0.62 0.67 0.52 0.67 0.81 0.28 0.67 0.86 

6 0.48 0.67 0.67 0.48 0.76 0.86 0.33 0.76 0.76 

5 0.48 0.71 0.67 0.43 0.67 0.81 0.28 0.76 0.81 

4 0.48 0.71 0.67 0.33 0.67 0.81 0.33 0.67 0.81 

3 0.48 0.71 0.76 0.43 0.67 0.86 0.38 0.71 0.86 

2 0.48 0.71 0.71 0.43 0.76 0.86 0.38 0.71 0.86 

1 0.48 0.57 0.71 0.33 0.67 0.81 0.38 0.71 0.71 

Source: own computation 
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Tab. 2: Results of primary learning evaluated as the ratio of correctly classified cases in 

a leave-one-out cross validation study 

Data set (a) (b) (c) (d) (e) (f) (g) (h) (i) 

1 Aircraft 1 1 1 5 3 2 1 1 1 

2 Ammonia 5 3 2 5 3 2 4 3 2 

3 Cirrhosis 1 1 1 1 1 1 2 2 1 

4 Coleman 5 3 2 3 2 1 2 2 1 

5 Delivery 4 3 2 3 2 1 2 2 1 

6 Education 2 2 1 5 3 2 5 3 2 

7 Electricity 5 3 2 2 2 1 5 3 2 

8 Employment 2 2 1 2 2 1 2 2 1 

9 Houseprices 1 1 1 1 1 1 1 1 1 

10 Imports 1 1 1 5 3 2 4 3 2 

11 Kootenay 4 3 1 5 3 2 5 3 2 

12 Livestock 3 2 2 4 3 2 5 3 2 

13 Machine 1 1 1 3 2 1 5 3 2 

14 Murders 2 2 1 3 2 1 1 1 1 

15 Octane 1 1 1 1 1 1 3 2 1 

16 Pasture 1 3 1 3 2 1 5 3 2 

17 Pension 4 1 2 4 3 2 4 3 2 

18 Petrol 1 1 1 5 3 2 5 3 2 

19 Stars 1 1 1 2 2 1 4 3 2 

20 Wood 2 2 2 2 2 1 4 3 2 

Source: own computation 
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