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PROPERTIES OF BACKWARD ELIMINATION AND 

FORWARD SELECTION IN LINEAR REGRESSION 
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Abstract 

Using Monte Carlo simulation, we study the properties of backward elimination and forward 

selection procedures which are widely used in classical linear regression for choosing variables 

to include in a regression model. Among others, we explore whether the procedures are capable 

of identifying authentic explanatory variables and eliminating the noise ones, whether classical 

least-squares inference theory is valid in the final selected model and whether the final selected 

model is superior to the full model in terms of prediction accuracy. We conclude that the use of 

the procedures is not advocated if classical inference is to be employed in the final selected 

model, while the procedures can potentially be useful for predictive purposes in some situations. 

The findings we have obtained are in agreement with similar studies available in the literature 

and have important implications for the practice of data analysis. Ignoring them can have severe 

consequences and can be interpreted as misuse/abuse of statistics. 
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Introduction 

In linear regression a researcher often faces the situation where she has several explanatory 

variables at hand and has to decide which of them are authentic variables in the sense that the 

true parameters on the variables in the regression model are non-zero and which of them are 

noise variables in the sense that the true parameters on these variables are zero. A different 

objective the researcher can come up against is selecting only a group of explanatory variables 

as predictors so that the predictions of the response variable based on the corresponding fitted 

regression model are as accurate as possible. In both the above situations the researcher is 

confronted with the task of subset selection. 
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Best subset regression – being one of the approaches to subset selection – considers 

each possible subset, selects the “best” one according to a suitable criterion (such as the adjusted 

coefficient of determination, AIC, etc.) and fits the regression model using the selected subset.  

Forward selection or backward elimination are greedy algorithms that do not search 

among all possible subsets but consider a path through them and check only the subsets along 

this path (Friedman et al., 2009). 

Forward selection and backward elimination procedures have been subject to various 

critical remarks and scrutiny in the literature (see, e.g., Harrell, 2001; Wittingham et al., 2006; 

Derksen and Keselman, 1992; Berk et al., 2010), pointing out, among others, that the test 

statistics used in the procedures do not have the claimed distributions, p-values do not have 

their proper meaning, estimated standard errors of the estimated regression parameters are 

biased low, confidence intervals are narrow, results differ for backward elimination and forward 

selection procedures and that researchers inappropriately rely on the final model. 

Our aim is to inspect various aspects of the backward elimination and forward selection 

procedures using Monte Carlo simulations. Monte Carlo studies similar to that of ours are 

available in the literature (e.g., Derksen and Keselman, 1992; Molodkina, 2014), though some 

of the aspects we examine have not been reported yet. Moreover, the settings of our simulations 

differ from those presented in the literature. 

We introduce the backward elimination and forward selection algorithms in Section 1. 

Section 2 studies their properties using Monte Carlo simulations. The final section of the paper 

concludes. The analysis and presentation of the results are rather brief so that they fit the scope 

and the extent of the papers to the conference proceedings. 

 

1 Backward elimination and forward selection algorithms 

We assume one quantitative response variable and a set of k explanatory variables (some of 

which are authentic and some of which are noise variables). For simplicity, we assume that each 

of the k explanatory variables is quantitative and represented by a single column in the model 

matrix. A full model is such a model which contains all the k explanatory variables. A final 

model is the model which contains only those explanatory variables that have been selected by 

the backward elimination (or forward selection) procedure. 

We perform backward elimination as follows: We start with the full model which 

includes all the k explanatory variables and estimate its parameters using least squares. Further, 

we remove the explanatory variable with the largest p-value associated with the corresponding 
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two-tailed t-test provided that the p-value is above a given threshold remove, such as 0.05. The 

model with the remaining (k – 1) explanatory variables is re-estimated and, again, the 

explanatory variable with the largest p-value is removed if the p-value exceeds the threshold. 

The procedure is repeated until all the explanatory variables remaining in the model have p-

values less than or equal to remove.  

We perform forward selection as follows: We start with a null model with no 

explanatory variables. We consecutively estimate the parameters of k straight line regression 

models using least squares, where each of the k explanatory variables is used as a single 

explanatory variable in the model. In each of the models, we evaluate the two-tailed t-test which 

“assesses the relevance of the variable in the model” and save the p-value of the test. Further, 

the explanatory variable with the lowest p-value is permanently included into the model if this 

p-value is less than or equal to a given threshold add, such as 0.05. Afterwards, (k – 1) 

regression models with two explanatory variables are successively estimated using least 

squares, the first variable being the one which has permanently been included into the model in 

the previous step, the second variable being successively each of the (k – 1) remaining 

explanatory variables which are not yet permanently included in the model. The p-values 

associated with the corresponding two-tailed t-tests on these second variables are obtained. 

Further, the variable with the lowest p-value is permanently included into the model provided 

the p-value is less than or equal to add. The above procedure is repeated until the lowest p-

value of the two-tailed t-test is larger than add. 

In our context (with quantitative explanatory variables used linearly), it is easy to see 

that deciding on the removal (or inclusion) of variables using the two-tailed t-tests is equivalent 

to using one-tailed partial F-tests and is also equivalent to removing (including) variables based 

on the least increase (largest decrease) of the residual sum of squares. As a result, our backward 

elimination and forward selection procedures are comparable to those presented e.g. in James 

et al. (2013), Yan and Gang Su (2009) or Rawlings et al. (1998).  

 

2 Monte Carlo simulation 

We assume a linear regression model (with no intercept) 

Yi = 1xi1 + … + mxim + … + kxik + i, i = 1, …, n,  (1) 

where n is the number of observations, Yi is the response variable for observation i, xi1, …, xim, 

…, xik are known constants (values of k explanatory variables for observation i), i is error for 
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observation i. 1, …, m, …, k are regression parameters and 1 ≤ m ≤ k is the number of non-

zero regression parameters. The model of Equation 1 is the full model, the number of authentic 

explanatory variables being m, the number of noise variables being k – m. 

The [1, 2, …, n]
T vector has an n-variate normal distribution with zero mean vector 

and covariance matrix 2In where In is an identity matrix of order n and 2 is a constant. The 

(sample, empirical) variance of the values of each explanatory variable is exactly equal to 1, 

the (sample, empirical) correlation between values of any pair of distinct explanatory variables 

being exactly equal to . The histogram of the values of each explanatory variable is close to a 

Gaussian one. 

Further, we focus on backward elimination and set remove = 0.05, k = 20 and 2 = 6.25. We 

explore 23 = 8 possible settings differing in the values of n, m and . Specifically, we examine: 

 two possible values of n: n = 50 or n = 300, 

 two possible values of m: m = 5 or m = 15 (the regression parameters 1, …, m, …, k for 

m = 5 are presented in the left plot of Figure 1, whereas those for m = 20 in the right one), 

 and two possible values of :  = 0 or  = 0.8. 

 

Fig. 1: Regression parameters for m = 5 (left) and m = 15 (right) 

 

Source: Author’s construction 

 

The above simulation settings were chosen so that we can compare various situations we 

can encounter in real-life analysis (smaller and larger sample size, few and many authentic 

explanatory variables, weak and strong correlation between explanatory variables). Moreover, 

the settings we assume allow us to see the weakness and strengths of the procedures well. Of 

course, other settings could be of interest such as those differing in the value of 2. This is, 

however, prevented by the extent of the paper and would hinder the clarity of the presentation 
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of the simulation outcomes. Though not presented in the paper, we have checked that under 

other simulation settings qualitatively similar conclusions would be reached.   

The number of Monte Carlo simulations for each setting is 1000, giving an upper bound on 

the standard error of relative frequency (i.e., probability estimator) of 0.5/√n = 0.016. The 

estimated standard errors of the various bias or mean estimators are bounded from above 

by 0.06. R software (R Core Team, 2018) has been used to perform the analysis. 

In the next sections various facets of backward elimination are inspected. As the extent of 

the paper is limited, forward selection is discussed briefly only in the Conclusion. 

 

2.1 Nature of the final models 

The following quantities are calculated within the Monte Carlo simulation in this section:  

 The relative frequency (RF) of obtaining a final model which contains at least one noise 

explanatory variable (pnoise), RF of obtaining a final with all the authentic explanatory 

variables (pauthentic), RF of obtaining a final model with all the authentic explanatory 

variables and no noise ones (pcorrect), and RF of obtaining a final model which includes the 

jth explanatory variable (pj, for j = 1, …, k). These relative frequencies are estimates of the 

corresponding true probabilities and are presented in Figure 2 and 3 (results are rounded to 

2 decimal places). 

 The average number of all explanatory variables (aveall) and the average number of 

authentic explanatory variables (aveauthentic) in the final model. These averages provide us 

with the estimates of the expected number of all and authentic explanatory variables in the 

final model and are presented in Figure 2 and 3 (results are rounded to 2 decimal places). 

 

Fig. 2: pj, pnoise, pauthentic, pcorrect, aveall and aveauthentic for various settings with m = 5. The 

grey (white) rectangles correspond to authentic (noise) explanatory variables. 
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Source: Author’s construction 

 

Fig. 3: pj, pnoise, pauthentic, pcorrect, aveall and aveauthentic for various settings with m = 15. The 

grey (white) rectangles correspond to authentic (noise) explanatory variables. 

 

Source: Author’s construction 

 

We see that the probability of obtaining a final model with at least one noise explanatory 

variable depends on the simulation setting and can generally be considerable. On the other hand, 

the probability of obtaining a model which contains all the authentic explanatory variables or a 

model which contains all the authentic explanatory variables and no noise one is very tiny for 

all the settings. The expected number of authentic explanatory variables in the final model 

differs across the settings and can be below m by a sizeable amount.  

 

2.2 Inference 
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We calculate the following quantities within the Monte Carlo simulation, presenting the results 

in Figure 4 and 5: 

 Bpar, the difference between the sample average of b3 (for m = 5) or b8 (for m = 15) and 

3 = 0.8 (for m = 5) or  = 0.8 (for m = 15). Bpar provides us with an estimate of the bias of 

the regression parameter estimator.  

 Bcond, the difference between the sample average of b3 (for m = 5) or b8 (for m = 15) and 

3 = 0.8 (for m = 5) or  = 0.8 (for m = 15), calculated only across those final models where 

the third (eighth, for m = 15) explanatory variable was included in the final model. Bcond 

provides us with an estimate of the bias of the regression parameter estimator given that the 

third (eighth) explanatory variable is included in the final model.  

 Brfe, defined as the difference between the sample average of regression function estimates 

at point [1, 1, …, 1]T and the true regression function at the point. It is an estimate of the 

bias of regression function estimator at point [1, 1, …, 1]T. 

 pcoverage, the relative frequency of covering the true regression function at point [1, 1, …, 1]T 

by a nominal 95% confidence interval for the regression function calculated from the final 

model according to the classical theory as if the model was prespecified in advance. pcoverage 

can be used to estimate the corresponding probability of covering the true regression 

function with the confidence interval. 

 BresVar, the difference between the sample average of residual variances and 2 = 6.25. It 

provides an estimate of the bias of residual variance. 

 

The red, blue and green lines in Figure 4 (Figure 5) capture 3 (8), the sample average of 

b3 (b8) and the sample average of b3 (b8) given that the third (eighth) explanatory variable is in 

the final model. The grey histogram in Figure 4 (Figure 5) represent the distribution of b3 (b8). 

Even though the results vary across simulation settings we can draw some common 

conclusions. We see that estimators of regression parameters, regression function and error 

variance are biased. Further, given that an explanatory variable is included in the final model, 

the estimated effect on the variable is inflated on average. Confidence intervals (for regression 

function) calculated according to the least squares theory as if the final model was prespecified 

in advance do not generally have the required nominal coverage. 

 

Fig. 4: Bpar, Bcond, Brfe, pcoverage and BresVar for various settings with m = 5.  
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Source: Author’s construction 

 

Fig. 5: Bpar, Bcond, Brfe, pcoverage and BresVar for various settings with m = 15.  

 

Source: Author’s construction 

 

2.3 Mean squared error of regression function estimator 

The fitted values from the full as well as from the final model can be considered as estimators 

of regression function. Let full = 2k/n be the average (over n observations) mean squared error 

of the estimator for the full model and let backward be the average (over n observations) mean 

squared error of the estimator for the final model from backward elimination. Further, let 

Rbackward be the ratio of backward to full. Values of Rbackward less than 1 imply that backward 

elimination performs better (in terms of mean squared error) in regression function estimation 

than using the full model. Consequently, it also performs better in prediction since the mean 
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squared error of prediction (at any point) is larger by 2 than the mean squared error of 

regression function estimation regardless of the model used. Rbackward will be estimated by 

Monte Carlo simulation, the estimate denoted by rbackward.  

 We define Rforward and RBestSubset in an analogous way as a ratio of forward to full and a 

ratio of BestSubset to full, where forward and BestSubset is the average (over n observations) mean 

squared error of fitted value for the final model from forward selection procedure and for the 

final model from best subset regression. In best subset regression, the adjusted coefficient of 

determination is used as a criterion to select the optimal model. The Monte Carlo estimates of 

Rforward and RBestSubset will be denoted as rforward and rBestSubset. r1/10,backward is an estimate of 

R1/10,backward where R1/10,backward corresponds to the ratio of average mean squared errors (for 

backward elimination) in the case where one tenth of the original size is used for the true 

regression parameters. 

 

Fig. 6: rbackward, rforward, rBestSubset and r1/10,backward for various settings 

 

Source: Author’s construction 

 

It follows that backward elimination can improve the prediction accuracy compared to the full 

model in some situations (many noise variables or variables with weak effects). More scrutiny 

is, however, needed to understand the benefits of the procedure for prediction objectives. 

 

Conclusion 

The belief that backward elimination is capable of detecting a model where all the authentic 

and no noise variables are included turned out to be faulty. Unfounded is also the conviction 

that results from classical least squares estimation theory can be enforced on the final model. 



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

123 
 

Consequently, if inference using classical least squares theory is the goal, the analysis within 

the full model without any removal of variables is advocated. The only situation we are 

currently aware of where backward elimination could potentially be fruitful is for improving 

predictions.  

 Though not reported explicitly, results analogous to those for backward elimination 

have been obtained for forward selection. We consider the findings important for statistical data 

analysis. Ignoring them can have severe consequences comparable to other instances of misuse 

or misinterpretation of statistics (see, e.g., Goodman, 2008; Ioannidis, 2005). 
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