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Abstract 

Survival models are often based on the assumption of independence between survival time 

and censoring time. This paper explores the performance of certain parametric survival 

models in cases where this assumption doesn’t hold. Firstly, a correctly specified likelihood 

for a bivariate parametric copula and two parametric marginal survival functions is derived. 

Secondly, the bias and variance of this estimator are compared on simulated data with the bias 

and variance of the standard estimator. The results of this simulation are confirmed 

analytically for special cases. In the third part, we discuss the consequences for regression 

models using a dummy covariate. In particular, we present a model where the parameters of 

dependence are also a function of covariate values. We show that standard survival models 

can lead to flawed conclusions if independence between survival time and censoring time is 

assumed wrongly, even in cases when parametric families of the margins are correct. 
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Introduction 

Analysis of time-to-event data has a special place among regression models. One of its 

distinctive features is the presence of censored observations. If a study ends before the event 

of interest occurs for a given observation, one should still make use of precious information – 

namely that its time of interest is greater than the study time. Under the assumption of 

independence between these two times, such a right-censored observation can easily be 

included in the likelihood and an estimator with desirable properties can be derived. 

 However, this assumption of independence isn’t tenable for more complicated 

censoring mechanisms. Kalbfleisch and Prentice (2003, p. 249) analyze the competing 

dependent risks of leukemia relapse and graft versus host disease. One can also question the 

independence of time until default and time until early repayment of a given loan (Stepanova 



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

892 
 

and Thomas, 2002). It is therefore useful to simulate the behavior of standard estimators in 

these settings and compare them with more appropriate ones. 

 In the first section of this paper, we derive a likelihood function which accounts for 

dependent censoring, we specify the scope of this study and describe the simulation setting. 

We begin the second section by comparing the bias, variance and mean squared error (MSE) 

of our estimator with the standard one on simulated data. Then, we discuss the consequences 

of these simulations for regression models.  

This paper builds especially on studies by Emura and Chen (2016) and Li et al. (2007). 

 

1 Methodology 

 

1.1 Notation 

Denote the time of interest as D , the censoring time as E , their minimum as T and the event 

( )I D E as .  Let , ,X X Xf S h be the density, survivor function and hazard function of a 

random variable X  depending on a parameter 
X  where ( ) ( )X

x

S x f u du



   and 

( )
( ) .

( )

X
X

X

f x
h x

S x
  Finally, 

1 2( , )C c c stands for values of a copula function defined on the square

   0;1 0;1 , which depend on the parameter   and increase for each argument from 0  to 1.

Other properties of copulas can be found in Nelsen (2006). 

 

1.2 Likelihood under dependent censoring 

If the joint distribution of D and E is derivable, then there exists according to Sklar’s theorem 

(1959) a derivable copula such that: 

       ,  ,  .D EP D d E e C S d S e    (1) 

The distribution is therefore completely determined by its margins and the copula structure. 

Then, the conditional density equals: 

  
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(2) 

and the conditional survivor function equals: 

     
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If the event of interest is observed for the unit i at the time 
it  then 1i  and its contribution to 

the likelihood equals: 

 
, ( , ) ( ) ( ).

i

i D E i D i i iE D

t

f t u du f t S t t



 L   

(4) 

Since the contribution of censored observations is symmetrical, the log-likelihood of n

observations equals: 

 
    

 
    

1 1 2

,  , 
( ) (1 )( ).

n
D i E i D i E i

i D i i E i

i

C S t S t C S t S t
ln lnf t ln lnf t ln

c c
 



 
    

 
L  

(5) 

We denote the estimators which maximize lnL as ˆ ˆ ˆ, ,DEP DEP

D E   . For the special case of the 

independence copula 
1 2 1 2( , )C c c c c , the equation (5) can be split in two parts: 

 
       

1 1

(1 ) (1 ) .
n n

i D i i D i i i i i DE

i

E E

i
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(6) 

Since one is usually interested only in the estimation of 
D  and ElnL doesn’t contain any 

information about it, it suffices to maximize DlnL . We denote the commonly used estimators 

which maximize DlnL and ElnL as ˆ ˆ,INDEP INDEP

D E  . 

 For different copulas and marginal distributions, we always performed a numerical 

maximization of lnL , using ˆ ˆ,INDEP INDEP

D E  and 0   as starting points. We applied the 

algorithms by Nelder and Mead (1965) and by Byrd et al. (1996) and haven’t detected any 

irregular behavior of lnL  in the neighborhood of the starting points. All simulations build on 

R packages survival by Therneau (2015) and copula by Hofert et al. (2017). 

 

1.3 Purpose of the simulations 

If one doesn’t have any prior idea about ( )Dh t and the censoring distribution, a common 

empirical estimate *ˆ ( )Dh t  is based on the proportion of observed events just after t  among 

observations still at risk at t : 
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For the special case of the independence copula 
1 2 1 2( , )C c c c c , one really obtains 

* ( ) ( )D Dh t h t . However, for dependent D and E the estimator is biased by the factor ( )r t . 

Emura and Chen (2016) have already extensively studied the behavior of  *ˆ ( )Dh t  for different 

parametric settings. 

 Our focus is different. We assume one already has a correct idea about the parametric 

families of D and E (based on previous research, the nature of the data-generating process, 

etc.). We further assume that one believes for the same reasons in the independence of D and

E and uses therefore the standard estimator ˆINDEP

D . This study shows that being mistaken 

about the independence might lead to bias even if the families of the margins are correct. Our 

simulations are therefore relevant especially in situations where parameters of the copula 

change over time, see Barthel et al. (2018). 

 

1.4 Setting of the simulations 

Archimedean copulas of the form 

   1 1

! 2 1 2,  ( ( ) ( ))C c c c c      (8) 

are considered classical by Nelsen (2006) and were also used in the simulation study by 

Emura and Chen (2016) mentioned above. Their derivatives are 

 
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1 2
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

 



 Two specific families were chosen for the simulations: The 

Frank (1978) copula with the generating function:  

 ln(1 (1 ) )
( )

ue e
u






  
   

(9) 

and the Ali-Mikhail-Haq (AMH) copula (Ali et al., 1978) with the generating function: 

 1
( ) .

u
u

e










 

(10) 

The parameter   is related to Kendall’s tau and both copulas permit to model both positive 

and negative correlation. While Frank copulas are symmetrical, one tail of AMH copulas is 

heavier. 

 Two distributions were chosen for D and E : the exponential distribution with the 

survivor function parameterized as ( ) exp( exp( ))D DS d d     and the log-logistic 

distribution with scale 1 parameterized as 1( ) (1 exp( ))D DS d d      . Both distributions are 

commonly used in parametric survival analysis, see Hosmer and Lemeshow (2008). 
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Moreover, there exists a closed-form solution for ˆINDEP

D in the case of exponential 

distribution, which allows us to confirm its bias analytically: 
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(11) 

Since ˆˆ ˆ ˆ, ,DEP DEP

D

DE

E

P   


  


θ  is consistent, one can make for large enough n  the 

approximation ˆ ˆ ˆ ˆ( , , ).INDEP DEP DEP

D D D Eb     Delta method then yields an approximate 

relationship between the covariance matrix of ˆ ˆ ˆ,INDE PI P INDE

D

ND P

E

E   
 

θ , which has a closed-

form solution, and the covariance matrix of ˆ DEP
θ : 

         ˆ ˆ ˆ    ,
TINDEP DEP DEPVar Var Var       

    
θ b θ B θ θ θ B θ θ B θ  

(12) 

where  B θ  is the Jacobian of Db  and Eb  evaluated at the true parameters. In this case, one 

can therefore also confirm the variance and thus the MSE analytically. 

 Four simulation settings based on two copulas and two marginal distributions 

described above are presented in the next section. Within each setting, we fixed the parameter 

5E  , varied the parameter D  from 2 to 8 and varied the parameter   from -4 to 4 for the 

Frank copula and from -0.75 to 0.75 for the AMH copula. The sign of   corresponds with the 

sign of the correlation between D and E  and with increasing D  one progresses from mild to 

heavy censoring. These values were chosen to assure that one always observes a mixture of 

censored and uncensored observations. For each combination of parameters we generated a 

sample of 1000 observations and calculated ˆINDEP

D and ˆDEP

D . This was repeated 100 times to 

learn about the distributions of both estimators and therefore also about their bias, variance 

and MSE.  
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2 Results of the simulations 

2.1 Simulations without covariates 

The following figures refer to the setting with Frank copula and exponential margins. The first 

figure shows the bias of ˆINDEP

D , the second compares the variance of ˆINDEP

D and ˆDEP

D : 

Fig. 1: Bias of the standard estimator, comparison of variances of both estimators  

  
Source: the authors. 

Black solid lines show the values predicted by (11) and (12).  

 The first figure shows that the estimator ˆINDEP

D is too optimistic for positively 

correlated D and E  and vice versa. The absolute value of the bias increases with the amount 

of censoring, but up to 50% censoring ( 5D  ), the size of the bias is negligible. In contrast, 

ˆDEP

D maximizes the correctly specified likelihood and is therefore always asymptotically 

unbiased. However, the second figure indicates that its variance is higher, because (5) and (6) 

have the same information from the sample and (5) always spends part of it to estimate an 

additional parameter  . Predicted values match well with the simulations. 

 These results can be used to compare the MSE of both estimators. The left figure 

below refers to the same setting as previously, the right to the setting with AMH copula and 

log-logistic margins: 

Fig. 2: Comparison of MSE of both estimators for different settings 

  

Source: the authors. 
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Identical results were obtained for the remaining two settings. 

 For mild censoring, our estimator is slightly preferable to ˆINDEP

D . For heavy censoring 

with strong dependence, we have ˆ ˆ( ) ( )DEP INDEP

D DMSE MSE  . Interestingly, the standard 

estimator performs slightly better than ours for heavily censored data with very weak 

dependence, despite being incorrectly specified. In these situations, the reduction in variance 

overcompensates for the bias of ˆINDEP

D . The exact size of these differences depends on the 

simulation setting. 

 

2.2 Regression models 

The simulations can be adjusted to derive estimated effects in a regression model with a 

dummy covariate x.  

The following figure is based on the setting with Frank copula ( 4   ) and log-

logistic margins. Red points ( 0ix  ) were generated from a distribution with the margins 

0 4.5x

D
  and 0 8x

E
  , blue points ( 1ix  ) were generated from a distribution with the 

margins 1 5x

D
  and 1 2x

E
  . The values D  are denoted with solid vertical lines. Points 

under the diagonal are censored. 

Fig. 3: Bias in regression models 

 

Source: the authors. 

The dashed lines correspond to the estimates 
0,ˆx INDEP

D


and 
1,ˆx INDEP

D


. Because of the negative 

correlation, both underestimate the true values. However, the size of the bias is bigger for 

1x   due to heavier censoring. In this case, it even makes the positive effect 1 0 0.5x x

D D   
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appear negative and “statistically significant”. Similar results can be derived for positively 

correlated data and other simulation settings. 

 On the contrary, our estimators are unbiased even in cases when   is a function of x.  

The following table shows the estimates in the same setting as above except for 0 4x   :  

Tab. 1: Dependence as a function of covariates  

Parameter 0x

D


 
0x

E


 
0x 

 
1x

D


 
1x

E


 
1x 
 

True value 4.5 8 4 5 2 -4 

Estimate  

(st.error) 

4.5044 

(0.0548) 

8.3963 

(0.4441) 

2.6820 

(1.1505) 

4.9493 

(0.1396) 

1.9986 

(0.0570) 

-3.8157 

(0.7400) 

 

Source: the authors. 

These results can be easily generalized for multiple and continuous covariates.         

 

Conclusion 

This simulation study illustrates the importance of accounting for dependent censoring even 

in cases when one knows the parametric families of the marginal distributions. Ignoring this 

issue might lead to flawed conclusions especially for heavily censored data. This confirms 

and extends the results by Emura and Chen (2016) and Li et al. (2007). We derived a new 

estimator based on the correctly specified likelihood and show its satisfactory performance for 

Archimedean copulas. 

Our estimator is based on the strong assumption that one has a correct idea about the 

parametric family of the copula. In further research we relax this assumption and find the 

optimal copula under several possible ones. Moreover, we extend our findings to a mixture 

cure survival model and apply the methodology in the field of credit scoring. 
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