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Abstract 

The generalized autoregressive conditional heteroscedasticity (GARCH) process is a particular 

modelling scheme, which is capable of forecasting the current level of volatility of financial 

time series. Recently, recursive estimation methods suitable for this class of stochastic 

processes have been introduced in the literature. They undoubtedly represent attractive 

alternatives to the standard non-recursive estimation procedures with many practical 

applications. It is truly advantageous to adopt numerically effective estimation techniques that 

can estimate and control such models in real time. However, abnormal observations (outliers) 

may occur in data. They may be caused by many reasons, e.g. by additive errors, measurement 

failures or management actions. Exceptional data points will influence the model estimation 

considerably if no specific action is taken. The aim of this contribution is to propose and 

examine a robust recursive estimation algorithm suitable for GARCH models. It seems to be 

useful for various financial time series, in particular for (high-frequency) financial returns 

contaminated by additive outliers. The introduced algorithm can be effective in the risk control 

and regulation when the prediction of volatility is the main concern since it distinguishes and 

corrects outlaid bursts of volatility. Real data examples are presented. 
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Introduction 

Financial time series (in particular returns of financial assets) typically exhibit significant 

kurtosis and volatility clustering. The assets are usually stocks or stock indices or currencies 

(Tsay, 2013). The GARCH models introduced by Engle (1982) and Bollerslev (1986) are 

commonly applied in order to model these typical properties with the aim to describe dynamics 

of conditional variances and forecast financial volatility. However, when fitted to real time 

series the standardized residuals of the estimated models have frequently excess kurtosis 

explainable by the presence of outliers which are not captured by the GARCH models, see e.g. 
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Carnero, Peña, and Ruiz (2012), Charles (2008) or Charles and Darné (2005). On the other 

hand, some authors argue that extreme observations are not outliers and they should be 

incorporated into the model, see e.g. Eraker, Johannes, and Polson (2003). 

The parameters of the GARCH models are routinely estimated by the (conditional) 

maximum likelihood but they are rarely calibrated recursively. Nevertheless, parameter 

estimation performed using recursive algorithms is undoubtedly advantageous. To evaluate the 

parameter estimates at a time step, recursive estimation methods operate only with the current 

measurements and parameters estimated in previous steps (see e.g. Aknouche and 

Guerbyenne (2006) or Hendrych and Cipra (2018)). It is in sharp contrast to the non-recursive 

estimation where all data are collected at first and then the model is fitted. Therefore, recursive 

estimation techniques are effective in terms of memory storage and computational complexity. 

This efficiency can be employed just in the framework of (high-frequency) financial time series 

data. Alternatively, it is possible to adopt these methods to monitor or forecast volatility in real 

time, to evaluate risk measures (e.g. the Value at Risk or Expected Shortfall), to detect faults, 

to check model stability including detection of structural changes, etc. Moreover, due to the 

previous arguments, the recursive GARCH estimation should be resistant (robust) to outliers. 

The primary goal of this paper is to suggest a robust recursive algorithm which is effective 

enough in the context of GARCH models to estimate and forecast volatility of contaminated 

(high-frequency) financial data in real time. 

Various methods of non-recursive estimation of GARCH parameters and volatility in 

presence of outliers consist either in: (i) identifying and correcting additive outliers (AO) or 

innovative outliers (IO) in (residual) time series (see e.g. Charles (2008) or Charles and 

Darné (2005)), (ii) robustifying classical statistical estimators of the type LS or ML to the form 

of M-estimators and similar robust versions (see e.g. Carnero et al. (2012)), or (iii) applying 

estimators with robust properties of the type LAD or MAD (see e.g. Bernholt, Fried, Gather, 

and Wegener (2006)). As robust recursive estimation of GARCH model is concerned, initially 

one should remind a close connection to robustification of Kalman filter, which is desirable 

including various engineering applications in the context of state space modeling with outliers 

(see e.g. Romera and Cipra (1995)). 

This paper is organized as follows. Section 1 presents robustified self-weighted 

recursive estimation algorithm suitable for GARCH models. Section 2 describes an empirical 

study in which various estimation strategies leading to different volatility forecasts are 

compared real data applications. 

 

http://www.sciencedirect.com/science/article/pii/S0165176511003521
http://www.sciencedirect.com/science/article/pii/S0165176511003521
http://www.sciencedirect.com/science/article/pii/S0165176511003521
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1 Robust recursive estimation of GARCH models 

The GARCH(p, q) process {yt}tZ in financial applications is commonly defined as: 
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where {t}tZ is a sequence of iid random variables with zero mean and unit variance, and ω, 

1, …, p, 1, …, q are real parameters of the process. The first two conditional and 

unconditional moments can be simply calculated as: 
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where t denotes the smallest -algebra with respect to which ys is measurable for all s ≤ t. 

Sufficient conditions for t
2 being positive are ω > 0, 1, …, p, 1, …, q ≥ 0. If 1 = … = 

q = 0, the model is reduced to the ARCH(p) case. Additionally, sufficient conditions for yt 

being (weakly) stationary are ω > 0, 1, …, p, 1, …, q ≥ 0 and 1
11

 
q
j j

p
i i  . 

The one-step ahead prediction of t
2 is expressed as: 
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The GARCH models are routinely estimated by the non-recursive conditional maximum 

likelihood method with normal distribution being usually preferred since the corresponding 

estimates stay consistent (even if they might be inefficient in the case of non-normally 

distributed innovations t in (1)). 

Hendrych and Cipra (2018) proposed the recursive scheme for estimating the parameters 

of the GARCH model (1). The algorithm was derived by applying the general recursive 

prediction error method (Ljung & Söderström, 1983). Principally, the negative conditional log-

likelihood criterion corresponding to the GARCH process is recursively minimized (when 

assuming normally distributed innovations t in (1)). In many instances, this approach may be 

truly advantageous. For example, it is possible to monitor or predict volatility on-line in the 

high-frequency financial data context. Recursive estimation methods are also effective in terms 

of memory storage and computational complexity since the current parameter estimates are 

evaluated using the previous estimates and actual measurements. Moreover, they can be used 

to detect structural model changes. 

Using GARCH models, it is necessary to be concerned about outliers that may occur in 

data (see also Introduction and Section 2 on real data applications). Outliers can be caused by 
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many reasons, e.g. by additive innovations, measurement failures, operational risk problems, 

management decisions, etc. They can influence the estimation and prediction in the applied 

model considerably if no specific action is taken. Therefore, if such defects are expected in the 

data set, one should modify the estimation algorithms to make them more robust. The outliers 

tend to appear as spikes in the sequence of standardized residuals which obviously result in 

large contributions to the loss function. There exist various ways how to robustify recursive 

estimation algorithms (refer to Introduction). In this contribution, a simple way of handling 

outliers is applied based on testing a measurement at each time t. If it is large compared with 

a given limit, it is indicated as erroneous and substituted immediately by another value (consult 

e.g. Romera and Cipra (1995) and others). According to simulations, this strategy seems to be 

efficient for additive outliers (AD) mainly. 

Under the previous arguments, the recursive estimator introduced by Hendrych and 

Cipra (2018) can be robustified to the following form: 
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where the recursive estimates are collected in the vector rob
tθ̂ . To complete this algorithm, one 

defines the outlier-corrected series }ˆ{ rob
ty  as follows: 

 

   

 



















 



otherwise.

,/)ˆ(ˆ)ˆ()(ˆ)ˆ(for

/)ˆ(ˆ)ˆ()(ˆ)ˆ(signˆ)ˆ(

)ˆ(

2

1

2

1

2

2/11

2

1

2

1

2

2/11

2

1

2

t

tttttttt

ttttttttt

t

y

uy

uy

y 







robrobrobrobrob

t

robrob

robrobrobrobrob

t

robrobrob

t

rob

rob Pθθ

Pθθθ





 
(4b) 

Note that 2)ˆ()(signˆ robrob
ttt yyy   and that u1-α/2 denotes the corresponding quantile of the 

standard normal distribution, where one usually puts  = 0.05. The forgetting factor {t}tN is 

a deterministic sequence of positive real numbers less or equal to one. It represents the 

observation weight over time. One commonly puts 0 = 0.95 and 
~

 = 0.99. The initialization 
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of the algorithm is thoroughly discussed in Hendrych and Cipra (2018). Finally, one can 

introduce a simple projection, which completes the algorithm (4) and ensures that it will not 

degenerate: 
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The suggested algorithm (4) is inspired by the robustified version of Kalman filter 

derived in Cipra and Hanzák (2011). Point out that the assumption of normality can be replaced 

by other distributions. The performance of this algorithm was (fairly) compared by means of 

the various Monte Carlo experiments, which confirm its adequacy. 

Parallelly, one can construct the robust recursive prediction of volatility, namely the 

one-step ahead prediction has the form (compare with (3)): 
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2 Real data applications 

Figure 1 plots the log-returns of the daily currency rate CHF/EUR for the period from 

January 2000 to May 2017 which shows an apparent burst of volatility in January 2015 (the 

initial segment of the data is not displayed due to initialization of the recursive algorithm: the 

recursive estimates generally tend to be volatile here).1 It has a clear explanation, i.e. the end of 

currency regulation of CHF by the Swiss National Bank since 2015: CHF was pegged to the 

Euro for around two years, with the minimum rate (or the floor) at 1.2. As of 15th January 2015, 

this link has been removed (as the consequence of appreciation of USD against EUR and of 

CHF weakening against USD). 

It was natural to apply the suggested algorithm (4) to handle this time series. This 

estimation scheme has indeed identified the value of January 2015 as an outlier and corrected 

it in a proper way. Figure 2 with the recursively estimated parameters of the GARCH(1, 1) 

model displays that one should not ignore the presence of outlier; otherwise there occurs a jump 

in the estimated parameters (when one compares with non-robustified recursive estimates as in 

                                                           
1 www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html 



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

568 
 

Hendrych and Cipra (2018)). Moreover, another legitimate reason for the application of the 

algorithm (4) is that it enables the adaptation in the case of parameter changes. Similarly, the 

one-day ahead predictions of volatility (refer to (6)) would be out of reality without the 

robustification (see Figure 3). 

The estimation algorithm (4) has been further applied to forty currency rates */EUR 

(daily log-returns) and in some of them the declared robustification has been activated (see 

Table 1). The results for these daily log-returns are not reported here since the figures are just 

of the type presented herein. 

Apparently, the considered real data applications have demonstrated that the proposed 

robustifying modification of the recursive estimation scheme introduced in Hendrych and 

Cipra (2018) can (significantly) improve the quality of volatility forecasts when additive 

outliers are present in the financial time series. 

 

Fig. 1: Log-returns of daily currency rate CHF/EUR (January 2002 - May 2017) 

 

Source: Authors (calculated by statistical software R) 

 

Tab. 1: Times of activation of robustification in (4) for some daily currency rates */EUR 

Currency Months of identified outliers Currency Months of identified outliers 

USD 1999−07−26 TRY 2006−05−12 

HUF 2003−01−17 CAD 2000−01−04 

ROL 2000−01−04 CNY 2006−01−23 

RON 2006−05−15 MYR 2006−04−18 

CHF 2015−01−15 MYR 2008−03−17 

ISK 2008−11−06 MYR 2008−03−20 

TRL 2001−02−22 NZD 1999−08−25 

Source: Authors (calculated by statistical software R) 
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Fig. 2: Estimated parameters ω, 1, 1 for daily log-returns of the currency rate CHF/EUR 

before (red dashed line) and after (blue solid line) the robustification 

 

Source: Authors (calculated by statistical software R) 

 

Fig. 3: One-day ahead predictions of volatility for daily log-returns of the currency rate 

CHF/EUR before (red dashed line) and after (blue solid line) the robustification 

 

Source: Authors (calculated by statistical software R) 

 

Conclusion 

The robust recursive algorithm for the estimation parameters and the corresponding volatility 

prediction of the GARCH model suggested in this paper seems to be effective for financial data, 

especially for contaminated log-returns in the risk control and regulation when the prediction 

of volatility is the main concern. The one-stage recursive estimation procedure introduced for 

the GARCH process by Hendrych and Cipra (2018) was robustified in such a way that it can 
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distinguish and correct outlaid bursts of volatility. The real data examples also demonstrate that 

the suggested procedure enables corresponding adaptations in the case parameter changes. 
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