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Abstract 

ROC curves, which derive from signal detection theory, are widely used to assess binary 

classifiers in various domains. The AUROC (area under the ROC curve) ratio or its 

transformations (the Gini coefficient) belong to the most widely used synthetic measures of 

the separation power of classification models, such as medical diagnostic tests or credit 

scoring.  

Frequently a need arises to model an ROC curve. In the biostatistical context, modelling ROC 

curves was discussed mainly in the context of scarcity of available data and estimation, but in 

case of credit scoring the modelling may be required for other reasons.  

When a model for an ROC curve is needed, several options are available. In the article 

binormal, bilogistic, bigamma and bibeta models are defined, along with the novel approach: 

a bifractal ROC curve model.  

The models are tested against publicly presented empirical ROC data. As it turns out, taking 

into account goodness of fit, all presented models, except for the bilogistic curve, are 

comparable and fit the data quite well. The choice of the model should therefore be driven by 

other features of the curves under consideration.  
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Introduction 

ROC curves derive from signal detection theory, but currently they are popular in many 

domains as a method to graphically present separation power of binary classifiers (Fawcett, 

2005). Those binary classifiers may be known for example as diagnostic tests in biostatistics, 

biomarkers in clinical epidemiology, detectors in signal processing, credit scores in banking 

and, generally, in machine learning and data mining research and applications.   
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 An ROC curve plots true positive fraction (in biostatistics: sensitivity, in credit 

scoring: cumulative bad proportion) against false positive fraction (in biostatistics:1-

specificity, in credit scoring: cumulative good proportion).    

 An ROC curve may be summarised with its “area under curve” (AUC or AUROC) 

index. Generally, with some reservations regarding uncertainty and the shape of the curve, the 

higher the AUROC, the better. In credit scoring domain the Gini coefficient is more popular, 

which, in fact, is a function of the area under the curve: 

𝐺𝑖𝑛𝑖 = 2 ⋅ 𝐴𝑈𝑅𝑂𝐶 − 1    (1) 

 Frequently, a need to model a ROC curve may arise. In biostatistical contexts the 

scarcity of data drives this need – the question is then how much uncertainty there is about the 

real path of the curve. The ROC curve is estimated and confidence intervals for AUROC may 

be computed. Some of the models described below were derived in this context and serve as a 

basis for such estimation.  

 In the credit scoring domain scarcity of the data may not be the key problem. If there 

is uncertainty regarding the ROC curve, it is not driven by limited number of observations – 

the uncertainty may be driven by the macroeconomic risk or by the fact that the data is 

censored (a lender does not have a good/bad information on rejected applicants – a reject 

inference problem). Still, the models for ROC curves may turn out to be useful in such 

situations.  

 Another example, more often encountered by the author, when the need for modelling 

ROC curves arises, is the situation when the financial institution does not have a model yet. 

For example the lender wants to know how much better should the model be (in other words, 

how much should its Gini coefficient improve) in order to achieve business goals. Or, the 

other way round, the lender knows that the quant team is able to produce a new scoring model 

(based on new available data or with the help of a new classification methodology) and is able 

to achieve a Gini coefficient higher by 15 percentage points – a question arises, to what extent 

it will reduce credit losses or increase loan portfolio profitability. Again, models for ROC 

curves described below may prove useful.   

 

1 ROC curve models 

Generally, a ROC curve may be viewed as a function [0; 1]→[0; 1] which is built using two 

cumulative distribution functions. In the context of credit scoring, those two CDFs are those 

for good and bad customers based on their scores. The general formula for a ROC curve is 

then: 
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𝑦 = 𝐹𝐵 (𝐹𝐺
−1(𝑥)),    (2) 

where 𝐹𝐵 is a CDF of scores of bad customers and 𝐹𝐺
−1 is inverse distribution function of 

scores of good customers. In other word, the ROC curve may be defined using a parameter:  

𝑦 = 𝐹𝐵(𝑠)

𝑥 = 𝐹𝐺(𝑠),
    (3) 

where s denotes the value of the test, that is – in the credit scoring context – the score. Several 

ROC curve models proposed below are based on this simple observation – two CDFs may be 

assumed to follow specific probability distributions.   

 Formula (2) shows that a ROC curve is invariant to monotone transformations of 

underlying scores – the score does not go directly to the ROC equation, only the CDFs go.  

 If the scores for bad borrowers are distributed according to a beta distribution with 

parameters 𝛼𝐵 and 𝛽𝐵 and the scores for good customers follow Beta(𝛼𝐺 , 𝛽𝐺), then the 

formula for the ROC curve is  

𝑦 = 𝐹𝛼𝐵,𝛽𝐵
(𝐹𝛼𝐺,𝛽𝐺

−1 (𝑥)),   (4) 

where 𝐹𝛼𝐵,𝛽𝐵
and 𝐹𝛼𝐺,𝛽𝐺

 are CDFs of the two beta distributions. Such a model is called a 

“bibeta” ROC curve (Chen & Hu, 2016).  

 A “bigamma” model (Dorfman et al., 1997), by analogy, assumes that the scores, or 

some monotone transformation of them, follow two gamma distributions: 

𝑦 = 𝐺𝛼𝐵,𝛽𝐵
(𝐺𝛼𝐺,𝛽𝐺

−1 (𝑥)).   (5) 

 The same analogy could be used to build a binormal model: 

𝑦 = 𝐹𝜇𝐵,𝜎𝐵
(𝐹𝜇𝐺,𝜎𝐺

−1 (𝑥)).    (6) 

 In this case, equation (6) can be reformulated to arrive at the following equation: 

𝑦 = 𝛷(𝑎 + 𝑏𝛷−1(𝑥)),    (7) 

where 𝛷 is a CDF of a standard normal variable, 𝛷−1 is its inverse,  

𝑎 =
𝜇𝐺 − 𝜇𝐵

𝜎𝐺
 

and 

𝑏 =
𝜎𝐵

𝜎𝐺
. 

𝛷 may be viewed as a (probit) link function in the more general equation for a ROC curve: 

𝑦 = 𝑔(𝛼0 + 𝛼1𝑔−1(𝑥)),   (8) 
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where g( ) is a link function. If a logit function is taken as a link function, namely:  

𝑔(∙) = exp (∙)/(1 + exp(∙)),   (9) 

a bilogistic ROC curve model is derived. After several transformations the formula for a bilogistic 

curve looks as follows: 

𝑦 = (1 + exp (𝛼1 ln (
1

𝑥
− 1) − 𝛼0))

−1
  (10) 

With the bilogistic curve we move from parametric ROC curve models, where one 

starts with distributions and then arrives at the formula, to “algebraic” ROC curve models, 

where the underlying distribution is somewhat “secondary” to the formula itself.   

A simple example of an algebraic model is a “power function”: 

𝑦 = 𝑥𝜃, 𝜃 < 1     (11) 

The power function may be also derived as a “Lehmann ROC curve”, based on proportional 

hazards specification (Gönen & Heller, 2010). From the credit scoring perspective the power 

ROC curve has an interesting property, which could be called „fractal“. If the shape of an 

ROC curve follows equation (11), then if we take any fraction of the lowest-scored customers 

and graph an ROC curve for this group, the shape of the ROC curve remains the same and the 

AUROC=1/(1+𝜃). Also, the Gini coefficient (=(1 − 𝜃)/( 1 + 𝜃)) remains constant. If one 

would like to make the Gini coefficient an explicit function parameter, the equation can be 

reformulated in the following way: 

𝑦 = 𝑥
1−𝛾

1+𝛾, 0 < γ < 1    (12) 

where 𝛾 is a parameter for the Gini coefficient.  

Analogically, one can derive a function which keeps the shape (and the AUROC/Gini) 

when plotted for any fraction of the highest-scored customers. It could be named a “right-

hand” fractal curve, as opposed of the left-hand curve described above. The formula for the 

right-hand fractal curve is as follows: 

𝑦 = 1 − (1 − 𝑥)
1+𝛾

1−𝛾    (13) 

As it turns out (see Kochański (2017) for the details), the empirical ROC curves lie 

somewhere in-between those two extremes, therefore a „bifractal“ model can be proposed: 

𝑦 = 𝛽 (1 − (1 − 𝑥)
1+𝛾

1−𝛾) + (1 − 𝛽)𝑥
1−𝛾

1+𝛾, (14) 

which is a linear combination of the two „fractal“ curves.  

 The apparent advantage of the bifractal function is that it contains Gini coefficient (or 

AUROC) as its explicit parameter. Also, the second parameter of the bifractal ROC curve has 
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a meaningful and intuitive interpretation as a distance between to extremes – left- and right-

hand fractal curves.  

 This could be a decisive advantage for the bifractal against the binormal model. 

However, as it turns out, the binormal model has a quite simple formula analytic formula for 

area under the ROC curve (Bandos et al., 2017):  

𝐴𝑈𝑅𝑂𝐶 = 𝛷 (
𝑎

√1+𝑏2
),     (15) 

which means that it can be transformed in such a way that its formula has the Gini coefficient 

as its parameter (𝛾): 

𝑦 = 𝛷 (𝛷−1 (
𝛾+1

2
) √1 + 𝑏2 + 𝑏𝛷−1(𝑥)) (16) 

 Because of the fact that having explicit Gini coefficient seems to be quite important in 

modelling, equation (16) will be used as the standard binormal model in the next section.   

 

2 Fitting ROC curve models to empirical data 

Models for an ROC curve presented in the previous section may be fitted to the empirical 

ROC data of real-life financial institutions’ scoring models. In this paper empirical ROC 

curves are taken from publicly available papers (Řezáč & Řezáč, 2011, Wójcicki & Migut, 

2010, Tobback & Martens, 2017) and presentations (Conolly, 2015, Jennings, 2017). In all 

but one case the curves reflect the separation characteristic of some form of a credit scoring 

model, the only exception is the anti-fraud model from Wójcicki & Migut (2010). In order to 

obtain the numbers (x and y coordinates of the points constituting the empirical ROC), it was 

almost always necessary to read the data from the graph itself, therefore an internet-based tool 

for transforming graphs into numbers with some pointing and clicking was used.   

 Once the data is available, the question emerges what is the correct procedure for 

fitting the curve. The binormal and bilogistic curve may be fitted quite intuitively through 

probit/logit transformation and simple linear regression fitting. However, such a procedure is 

not available for other models. The aim of the author was to use the same fitting procedure for 

all ROC curve models. Therefore numerical optimization has been used: bobyqa function 

from the R package minqa (Powell, 2009, Bates et al., 2014). The “objective function” to be 

minimized was the following: 

𝑓𝑜𝑏𝑗 = ∑ |𝑦𝑖 − 𝑟(𝑥𝑖)| ⋅ 𝑤𝑖𝑖 ,   (17) 

where |a| denotes absolute value of a, 𝑥𝑖 and 𝑦𝑖 are coordinates of the points from the 

empirical ROC curve, r(𝑥𝑖) is a vertical coordinate of 𝑥𝑖 point obtained from a modelled ROC 

curve and 𝑤𝑖 are weights set as illustrated in the Figure 1. In other words, weighted average 
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absolute vertical distance between empirical points and the theoretical curve was minimized. 

Optimisation procedure used in this exercise is analogical to the procedure used for fitting the 

bifractal curve in Kochański (2017). 

Fig. 1: Setting weights for the bobyqa objective function.  

Source: Kochański, 2017.  
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Fig. 2: Results of fitting the models to the Řezáč & Řezáč (2011) data.  

 

Source: Own calculations.  

Example results of fitting the five models (bifractal, binormal, bilogistic, bibeta and 

bigamma) are presented in figure 2. As it can be seen, in case of data from Řezáč & Řezáč 

(2011), basically 4 of 5 models fit the data quite good, the most deviation is observed in the 

case of the bilogistic curve.   

Table 1 presents the results of the fitting process in terms of the goodness of fit for all 

gathered data sets. Objective (fobj) is multiplied by 100 for clarity reasons – please note it can 

be interpreted as (weighted) average difference between the empirical ROC points and the 

fitted ROC curve, expressed in percentage points. As it turns out, in all the cases the bilogistic 

model shows the worst fit. Binormal model was the best in terms of goodness of fit in 4 cases, 

bigamma twice and bibeta once. Bifractal model also shows the good fit, but it is worse than 

binormal in all but one cases. 
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Tab. 1: ROC model curve fitting – goodness of fit (fobj ·100) 

 

Bifractal Binormal Bilogistic Bibeta Bigamma 

Jennings, 2017 0.45 0.35 0.74 0.70 0.59 

Conolly, 2015, curve I 0.74 0.67 0.77 0.75 0.72 

Conolly, 2015, curve II 1.03 0.65 1.25 0.66 0.61 

Tobback & Martens, 2017 1.44 1.59 2.51 1.32 1.35 

Řezáč & Řezáč, 2011 0.48 0.43 1.10 0.51 0.49 

Řezáč & Řezáč, 2011  - additional data points 

read from the graph 0.53 0.52 1.28 0.51 0.47 

Wójcicki & Migut, 2010 1.10 0.52 1.42 0.60 0.60 

Source: own calculations.  

Fig. 3: Average goodness of fit (fobj ·100) for particular models 

 

Source: own calculations, corresponding to Table 1.  

Figure 3 summarises finding from table 1 – average goodness of fit for each model is 

presented. Once again, the summarised data shows that all presented models, except for the 

bilogistic curve, are comparable in terms of the average goodness of fit. The choice of the 

model should therefore be driven by other features of the curves under consideration.  

3 Choice of the model – other aspects 

When assessing the appropriateness of a particular ROC curve model, apart from 

goodness of fit, number and interpretability of parameters should be considered. Binormal, 

bifractal and bilogistic models require just two parameters. Bifractal model has an explicit 

Gini parameter, which is important in the context of credit scoring modelling. When binormal 

curve is built with equation (16), the explicit Gini parameter for the binormal curve is also 

available. Other models do not allow simple reformulation aimed at obtaining Gini coefficient 

as input.  
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Second parameter of the bifractal model, responsible for the shape of the curve, has 

also apparent meaning, while the interpretation of the shape parameter in the binormal model 

is less obvious. The bifractal model, however, when compared with the dual normal 

distribution assumption of the binormal model, lacks a theoretical foundation, which may be 

considered a substantial disadvantage of this approach.  

One potential shortcomings of the binormal model is presence of “hooks” – non-

concave regions, which are irrational for an ROC curve (a portion of the curve is below the 

45º diagonal, so random guessing in those regions would be better than ROC-based decision 

making). Due to this fact “proper” ROC curves (as opposed to “improper” conventional 

binormal one) are suggested (Chen & Hu, 2016, Dorfman et al., 1997). In practice however, 

“hook” regions of fitted binormal curves, especially in the credit scoring context, seem to be 

relatively small, so this shortcoming is not necessarily the crucial one.  

Another argument against the binormal curve (as well as against the bibeta and the 

bigamma one) is that those models require quite complex mathematical operations. This 

argument would support bilogistic and bifractal approach, however due to availability of 

specialized computer software and cheap computing power it is not as important as it 

probably would be half a century ago.  

Table 2 brings together the advantages and disadvantages of the ROC curve models 

discussed above.  

Tab. 2: ROC curve models – comparison 

 

Pros Cons 

Bigamma/bibeta Good fit. “Proper” ROC curve obtained.  4 parameters, no explicit AUROC 

parameter, complicated implementation 

(requires Beta and Gamma distribution 

functions).  

Bilogistic 2 parameters, simple mathematical 

operations. 

Worst fit, presence of non-concave 

regions.  

Bifractal 2 parameters, explicit Gini parameter, 

interpretable shape parameter, good fit, 

only the simplest mathematical operations 

needed, monotone in the whole domain.  

Lack of theoretical background.   

Binormal Best fit, 2 parameters, the model may be 

reformulated to produce an explicit Gini 

parameter, lack of apparent 

interpretability of the second parameter. 

Presence of “hooks”: non-concave regions 

of the curve. More complicated 

implementation where standard normal 

CDF and quantile function are not 

available. 

Source: prepared by the author. 

 

  



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

862 
 

Conclusion 

Empirical ROC curves for credit scoring data may be modelled with the theoretical 

ROC curve models. Taking into account goodness of fit – measured on publicly available 

empirical ROC curve data for credit scorecards – the binormal, bibeta, bigamma and bifractal 

models have comparable performance, while the bilogistic one performs slightly but 

consistently worse. As the four models fit the data quite well, the choice of the model should 

therefore be driven by other features of the curves under consideration, including number of 

parameters and their interpretation (an explicit Gini coefficient in the binormal and bifractal 

formula is clearly a great advantage), as well as computational perspective and specific 

properties of particular curves.   
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