
The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

1156 
 

ESTIMATES OF QUANTILE CHARACTERISTICS BASED 

ON RIGHT CENSORED DATA 

Ivana Malá – Václav Sládek 

 

Abstract 

In survival analysis, we usually apply positively skewed, heavy-tailed probability distributions 

and the analysed datasets contain not only complete but also censored values. In the 

contribution, random samples with right censored data are treated and properties of quick 

estimators of central tendency – weighted means of selected quantiles – are of interest. We use 

both parametric, under an assumption of the probability distribution, and non-parametric 

distribution-free method based on Kaplan-Meier estimator of a survival function (for data with 

censored values) and linearized inverse empirical function and kernel estimator of the density 

for complete data. The Monte Carlo simulation study is performed in the R program. The impact 

of censoring is of interest, we use datasets with all values complete, and with 10 to 50 per cent 

of censored values. The dependence on the sample size is discussed; samples with 50, 100, and 

500 observations are used. Random samples are generated from the lognormal distribution, 

independent right censoring is used. 
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Introduction  

There are basically three main possible approaches in statistics: classic parametric, 

nonparametric and Bayesian. In this contribution, we compare the parametric and non-

parametric approach to the estimation of sample quantiles from datasets that includes the right 

(independently) censored values. The frequently used characteristics of the level are the mean 

and the median. In the survival analysis, we usually use highly skewed probability distributions 

to model the data and for this reason, we prefer quantile characteristics to the moment 

characteristics. Robust moments such as the L-moments, TL-moments or LQ-moments 

(Hosking, 1990, Mudholkar & Hutson, 1998, Šimková & Picek, 2017) are considered robust 

because they are less affected by outliers or sensitive to the contamination of the data than 

classical moments. The L-moments use expected values of order statistics, in the LQ moments, 

http://www.statisticshowto.com/robust-statistics/
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the expected values are substituted by a weighted mean of selected quantiles – quick estimates 

of location (Shabri & Jemain, 2007, Mudholkar & Hutson, 1998). The sample quick estimators 

of the location estimate the population characteristics based on a consistent estimator of the 

population quantiles. We can mention the Tukey´s trimean or the Gastwirth estimator (Pearson, 

2011) of the central tendency, we use more general characteristics defined by selected quantiles 

and their weighted mean.  

For the proper use of the LQ moments, we need a deeper knowledge of properties of 

these estimators of quantiles. The lognormal distribution is frequently used for the modeling of 

incomes, robust moments are applied in the moment matching method in (Bílková, 2014). The 

main task of this contribution is to describe properties of three and five quantiles quick 

estimators of the central tendency for this distribution. We use a Monte Carlo simulation to 

show properties of these estimators. Based on the simulation study, we study also the impact of 

the censoring (0-50%) on the estimated values.  

 

1 Methods 

1.1 Quick location estimators 

Denote f a density, F a cumulative distribution function, S a survival function, and Q a quantile 

function of a positive value continuous random variable X. In the survival analysis, we prefer 

quantile characteristics to the classical moments, as we usually work with skewed distributions. 

Distribution-free estimation of classical moments is not straightforward in case of the presence 

of censored values in the data. 

Instead of a median, we will analyze more sophisticated estimators of the location, 

where more quantiles are included in the statistics. The statistics trimean is given as  

                                            0.25 (0.25) 0.5 (0.5) 0.25 (0.75).Q Q Q                                     (1) 

In (2) we define a more general three-point quantile estimator (Mudholkar & Hutson, 1998, 

Šimková & Picek, 2017). 

 
, ,3( ) ( ) (1 2 ) (0.5) (1 ),a p X p Q a p Q p Q a        (2) 

for 0 0.5, 0 0.5.p a     The inclusion of two additional quantiles in the weighted mean 

gives a strong emphasis on the center (median), but the two quantiles also bring in significant 

representation from the edges (the role depends on p and corresponding weights 2p for quantiles 

and 1‒2p for the median).  

From (2) we obtain the median for 0p   and the trimean for 0 25p .  and 0.25.a   

The formula includes also the Gastwirth quick estimator of the location (Pearson, 2011) 
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                                                     0.3 (1/ 3) 0.4 (0.5) 0.3 (2 / 3).Q Q Q                                           (3) 

Now, select 0 0.25, 0 0.1.p a     Instead of using three quantiles (a median and two 

symmetric quantiles corresponding to the selected probabilities P a  and 1 1 )P a    a quick 

five-point quantile estimator of the location , ,5a p  based on a median and two pairs of symmetric 

quantiles (defined by probabilities P a , 1 ,a  5 ,a  and 1 5 )a  in the form 

 
, ,5( ) ( ) (5 ) (1 4 ) (0.5) (1 5 ) (1 )a p X pQ a pQ a p Q pQ a pQ a           (4) 

is used to evaluate LQ-moments in (Shabri & Jemain, 2007). The estimator is a weighted 

average of 5 quantiles corresponding to the probabilities , 5 , 0.5,1 5 ,a a a  and 1 a  with the 

weighs p for ( ), (5 ), (1 5 ),Q a Q a Q a  and (1 )Q a  and the complementary probability 1 4 p  

for the median (0.5).Q  

It is obvious, that for all symmetric distributions the values of  , ,3 ( )a p X  and , ,5 ( )a p X  

are equal to the median Q(0.5). The quantile function is defined for all distributions without 

any assumption of the existence of the moments. For this reason, estimators (2) and (4) can be 

used even for distributions like a Cauchy distribution. If the expected value exists, then 

( ) (0.5)E X Q  and 
, ,5 , ,3( ) ( ) (0.5) (  ) a p a pX X Q E X    for all acceptable values of 

parameters a and p. 

In this contribution, we use these characteristics for the positively skewed lognormal 

distribution. We analyze not only the theoretical values but also the possibility to obtain their 

sample values or estimates. For this reason, we use both non-parametric and parametric 

counterparts. In order to estimate characteristics (2) and (4), the estimates of the quantile 

function are substituted into formulas. 

For the data with all completed values, we can estimate quantiles by any definition of a 

sample quantile function. For example, there are 9 possible definitions of sample quantiles in 

the program R (R Core Team, 2017, funkce quantile in the package stats). All estimators (based 

on the empirical distribution) asymptotically approach the unknown theoretical quantile 

function. In Sheather and Marron (1990), these methods that interpolate and smooth the order 

statistics are discussed. We use a linearized sample quantile function (default type 7 in R) based 

on the formula (for the probability 0 1)P   and ( 1) 1h n P    

 
        1

( ) ,lin h h h
Q̂ P X h h X X

          
        (5) 

where .    is a floor function and the ordered sample is denoted by  (1) (2) ( ), , ..., .nX X X   
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The second estimate is a kernel type estimate of quantiles 
kerQ̂  based on the kernel 

estimator of the density of X. Estimates are smooth quantiles based on the quasi-inverse of the 

kernel estimate of the cumulative distribution function (Racine & Hayfield, 2018; Padgett, 1986 

for censored data). 

The estimators ˆ
linQ  and 

kerQ̂  are distribution-free nonparametric estimators, maximum 

likelihood estimator ˆ
MLEQ  is based on the assumption of the lognormal distribution.  

All computations and simulations are performed in R (R Core Team, 2017), for the 

evaluation of quantiles we use the packages np (Racine & Hayfield, 2018) and survival 

(Therneau, 2015, Therneau & Grambsch, 2000). 

 

1.2 Estimates of quantiles from censored data 

In order to estimate theoretical quantiles, if censored values are included in our data, we are 

able to estimate quantiles using non-parametric methods to avoid any assumption of the 

probability distribution. In this text, we use estimates based on Kaplan-Meier estimator of the 

survival function (Kaplan & Meier, 1958).  

The Kaplan-Meier estimate of the survival function S  1S F   is constructed (for 

positive values of x) as  

                                                          
,

ˆ( ) 1 ,
i

i

i x x i

d
S x

n

 
  

 
                                                       (6) 

where di  is a number of events that happened at ix  and in  denotes the number of all 

observations under the risk at .ix   

Then the Pth quantile for a survival curve S(x) is estimated as the location at which a 

horizontal line at the height 1‒P intersects the plot of ˆ( ).S x  If the survival curve does not fall 

to1 ,P  then that quantile is undefined. This problem is discussed in this text, as in case of the 

heavy censoring, the sample quantiles for too high probabilities are not defined. This problem 

can be solved by the use of parametric approach, but we have to take into account insufficient 

information about tails of the distribution. In Figure 1 the estimated survival function is shown 

for a sample of 100 values with 28% (28 censored, 72 non-censored values) of right censored 

values (in the random censoring we choose the censoring variable to produce 30% of censored 

data in the mean). The highest non-censored value is 17.7 (the vertical line in blue) enables to 

estimate quantiles for probabilities up to 0.845. The value 0.155 is shown by the horizontal blue 

line. In the figure, non-censored data are given by plus signs. In the sample, the maximum is 
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equal to 39.6 and 4 values in the generated sample are higher than 17.7. From this curve, we 

can estimate only quick estimators, that use quantiles to P = 0.845. 

 

Fig. 1: Kaplan-Meier estimate of survival function, n=100, LN(1;1.52) 

 
Source: own computations 

1.3 Quick estimators for the lognormal distribution 

Applying definitions (2) and (4) on the symmetric distribution, we obtain the centre of the 

symmetry. In the contribution, we use skewed two-parametric lognormal distributions 

2( ; )LN    with low and high coefficient of skewness. For the lognormal distribution we obtain  

 
 

 

, ,3 (1 2 ) 1 2

2 ,
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a a
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  (8) 

Both estimators are the product of the median (e )
 and a term depending on the parameter 

2  

and selected parameters a and p of the quick estimator of the location.  

 

1.4 Simulation study 

In the simulation, we generate 10,000 samples with 50, 100, and 500 observations from two 

lognormal distributions with parameters 1 1,  2 0 5.   and 2 1,  2 1 5. .   We selected one 

distribution with a low skewness (coefficient of skewness 1.06) and one distribution relatively 
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skewed (coefficient of skewness 33.47) with the same median 
1

0 5 e 2 71.x . .   The 

characteristics of these distributions are  

            ( ) 3 08, ( ) 1 64, 2 80, 2 77,E X . D X . trimean . Gastwirth location .                      (9) 

           ( ) 8 37, ( ) 24 4, 3 48, 3 07E X . D X . trimean . Gastwirth location . .                     (10) 

In Figure 2 the values of quick estimators for three distributions (the middle surface is 

constructed for the lognormal distribution with 1 1,  2 1  ) with the same median 2.71, 

standard deviations 1.64, 5.87, 24.4 and coefficients of skewness 1.06, 6.18 and 33.47.  

 

Fig. 2: 3D plot of τ3 and τ5 for LN(1;0.5), LN(1;1), LN(1;1.5) 

 
Source: own computations 

The complete generated samples (referred as 0% censored) were then transformed to 

censored data with approximatively (in the mean) 10%, 20%, 30%, 40%, and 50% of right 

censored data. The independent random censoring was used. The n independent values of a 

censoring random variable C with the lognormal distribution with 1C   and C  were 

generated independently of the sample from the distribution of X. The parameter C  was found 

to obtain the chosen percentage of censored data by the formula 

2

1= + 1C C Pu      

for 100P% of censored data in the censored sample. The observed censored data are then given 

by min(X, C); the value is censored, if X > C. We use 2.432,1.941,1.586,1.284, and1C   in 

order to obtain (in the expected value) 10, 20, 30, 40, and 50% of censored data for the first 

distribution and 3.310, 2.517,1.945,1.456, and1C   for the second distribution in the 

simulation study ((9) and (10)). 
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In Figure 3, the relative frequencies of failed estimates due to the censored data are 

shown. In case of the heavy censoring, it is not possible to find upper quantiles, in our problem 

usually ˆ (1 )Q a  for small values a. Curves for relative frequencies for 10 – 50 per cent of 

censored data are ordered from right to left and they seem to be shifted with different rate. It 

means, that in case of larger random sample we can estimate high quantiles even in case of 

heavy censoring. 

 

Fig. 3: Percentage of failed estimates, sample sizes n=50 (left), n=100 and n=500 (right)  

 
Source: own computations 

In Figure 4 we present box-plots of the Gastwirth estimator for 100 and 500 observations 

and variance of lognormal distribution equal to 0.5 (to avoid problems with estimation of 

quantiles, see middle and right part of Figure 3, blue lines). Three estimates of the quantile 

function are used for the complete data; we compare the distribution for the non-parametric 

estimate, the maximum likelihood estimate and the kernel estimate. For datasets with censored 

data, an estimator based on Kaplan-Meier estimator and maximum likelihood estimates are 

given. The symmetric distributions are shown, the variances increase with the percentage of 

censored data (and decreases with the sample size). The variances are smaller for the parametric 

estimates (left box from the pair), but the difference is not large. 

In Table 1 we present estimated bias and squared standard error (MSE) for Gastwirth 

estimator (3) based on the Monte Carlo simulation. We compare these values for sample sizes 

100 and 500 and three lognormal distributions with increasing parameter σ (values 0.5, 1, 1.5). 

The data are not contaminated; for this reason, the parametric approach is probably optimal. 

But the performance of distribution-free methods is comparable to the parametric method. In 

our simulation, the kernel estimate is not superior to the usual sample quantiles. Its efficiency 
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decreases with the parameter of skewness, we register more outliers in estimates for large values 

of the parameter .    

 

Fig. 4: Box plots for Gastwirth estimate; complete data: non-parametric (left), paramet-

ric (middle), kernel (right)), for censored data non-parametric (left), parametric (right). 

 
                                       0       10    20    30    40    50                         0     10     20   30     40    50     

                                        per cent of censored data                               per cent of censored data                   

Source: own computations 

 

Conclusion 

In the contribution, the quick location estimates of the location are treated. Their properties are 

analyzed with the use of simulations for the lognormal distribution.  

The quick estimates of the location are based on quantiles, instead of means. For their 

evaluation from a sample, sample quantiles should be estimated from the random sample. In 

case of heavy right censoring, the problem of estimation of upper quantiles usually arises 

because of the lack of high non-censored values. In the contribution, we illustrate the problem 

for the lognormal distribution. In Figure 2, the percentage of failed estimation of (1‒a) % 

quantile is shown for sample sizes 50 to 500 and for mild to heavy censoring from 10 to 50% 

of censored data. The maximum likelihood parametric fit is applicable even for small samples 

and heavy censoring, but the quality of estimates is expected to be poor as we have information 

only on a small left part of the distribution. 

From our simulations, it follows that it is necessary to pay attention to data and to 

sufficient sample size in relation to the percentage of censored data. The choice of the parameter 

a should be large enough to be able to estimate (1‒a) % quantile. Small values of a seem to be 

theoretically interesting, by the application is restricted to large samples or only a small part of 

censored data. 
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Tab. 1: Gastwirth quick estimator results (censored 0%-50%, methods for Q̂  lq lin, par 

MLE, Kq kernel, KM Kaplan-Meier) 

  n=100, σ=0.5 n=500, σ=0.5 n=100, σ=1 n=500, σ=1 n=100, σ=1.5 n=500, σ=1.5 

% Est bias MSE bias MSE Bias MSE bias MSE Bias MSE bias MSE 

0 

Lq 0.0132 0.0242 -0.0020 0.0049 0.0186 0.1104 0.0017 0.0223 0.0493 0.2810 0.0084 0.0567 

par 0.0122 0.0190 -0.0023 0.0040 0.0240 0.0863 0.0032 0.0171 0.0402 0.2216 0.0045 0.0412 

Kq 0.0403 0.0251 0.0089 0.0049 0.0186 0.1149 0.0223 0.0222 0.0493 0.2915 0.0084 0.0595 

10 
KM 0.0147 0.0229 -0.0022 0.0051 0.0263 0.1124 0.0089 0.0215 0.0617 0.2819 0.0077 0.0577 

par 0.0115 0.0205 -0.0020 0.0041 0.0238 0.0895 0.0057 0.0175 0.0420 0.2318 0.0042 0.0433 

20 
KM 0.0155 0.0249 -0.0023 0.0055 0.0310 0.1178 0.0141 0.0228 0.0681 0.3083 0.0132 0.0608 

par 0.0102 0.0215 -0.0026 0.0045 0.0251 0.0931 0.0093 0.0194 0.0433 0.2548 0.0062 0.0472 

30 
KM 0.0177 0.0275 -0.0022 0.0061 0.0365 0.1322 0.0087 0.0245 0.0815 0.3454 0.0152 0.0667 

par 0.0129 0.0250 -0.0031 0.0050 0.0270 0.1064 0.0051 0.0212 0.0561 0.2811 0.0084 0.0544 

40 
KM 0.0258 0.0311 -0.0025 0.0069 0.0481 0.1571 0.0167 0.0282 0.1123 0.4308 0.0222 0.0742 

par 0.0176 0.0275 -0.0028 0.0057 0.0227 0.1265 0.0095 0.0227 0.0660 0.3247 0.0092 0.0622 

50 
KM 0.0286 0.0388 0.0007 0.0082 0.0831 0.2244 0.0252 0.0356 0.2039 0.9528 0.0410 0.0961 

par 0.0200 0.0331 -0.0017 0.0062 0.0346 0.1400 0.0149 0.0284 0.0676 0.4015 0.0167 0.0724 

Source: own computations 
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