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Abstract 

The paper is devoted to highly robust statistical estimators based on implicit weighting, which 

have a potential to find econometric applications. Two particular methods include a robust 

correlation coefficient based on the least weighted squares regression and the minimum 

weighted covariance determinant estimator, where the latter allows to estimate the mean and 

covariance matrix of multivariate data. New tools are proposed allowing to test hypotheses 

about these robust estimators or to estimate their variance. The techniques considered in the 

paper include resampling approaches with or without replacement, i.e. permutation tests, 

bootstrap variance estimation, and bootstrap confidence intervals. The performance of the 

newly described tools is illustrated on numerical examples. They reveal the suitability of the 

robust procedures also for non-contaminated data, as their confidence intervals are not much 

wider compared to those for standard maximum likelihood estimators. While resampling 

without replacement turns out to be more suitable for hypothesis testing, bootstrapping with 

replacement yields reliable confidence intervals but not corresponding hypothesis tests. 
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Introduction  

Numerous standard statistical methods are well known to be too sensitive to the presence of 

outliers. This is true for various estimators in various models, including linear regression, 

correlation coefficient, estimates of the mean and scatter matrix in multivariate data, nonlinear 

regression, dimensionality reduction, classification analysis etc.  

       Robust statistical estimators can be described as tools resistant to the presence of outliers, 

which commonly have the form of a modification (robustification) of standard statistical 

estimators. Their overview was presented e.g. by Filzmoser & Todorov (2011). Our attention 

is however focused entirely on implicitly weighted estimators, which seem to yield promising 

results in a variety of applications. They can be described as analogues of the least weighted 
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squares (LWS) estimator in the linear regression (Víšek, 2002). Roelant et al. (2009) used the 

term minimum weighted covariance determinant estimator (MWCD) for its analogue, which 

has been tailor made for mean and covariance matrix estimation in multivariate data analysis. 

A robust correlation coefficient based on the implicit weighting was investigated by Kalina & 

Schlenker (2015). All these implicitly weighted estimators, for which the weights are assigned 

based on ranks of residuals, can be computed by an analogue of the approximate FAST-MCD 

algorithm of Rousseeuw & van Driessen (1999). Also other approaches to rank methods are 

known to yield robust results, mainly in regression setup (Saleh et al., 2012). 

       Nevertheless, robust estimators require to be accompanied by a variety of diagnostic 

tools, including hypothesis tests and confidence intervals. In robust statistics, they have been 

investigated mainly for linear regression estimators (Víšek, 2011), while they have not 

penetrated to other important econometric models (Salini et al., 2016). Because they are often 

too complicated to be investigated theoretically, we take resort to resampling techniques. 

       Bootstrap estimation (bootstrapping) has become popular in a variety of statistical tasks, 

mainly in estimating the variance of estimators. Practical approaches to bootstrapping, i.e. 

resampling with replacement, were investigated by Efron & Tibshirani (1994). Incorporating 

the basic principles of bootstrapping, one may develop a great variety of resampling 

techniques that provide us with new possibilities of analyzing data by means of residual 

bootstrap, semiparametric bootstrap, Bayesian bootstrap etc. 

       Permutation tests can be also interpreted as an important class of resampling 

methodology (without replacement). They can be interpreted as a flexible nonparametric 

technique suitable if the asymptotic behavior is not known but if exchangeability of individual 

observations is ensured (Pesarin & Salmaso, 2010). Sometimes, permutation tests are also 

called invariance tests or conditional tests, where the latter concept stresses conditioning of 

the procedure by the observed data. If only a random sample of permutations is used, the 

approach is often denoted as permutation bootstrap. 

       In this paper, Section 1 proposes a new two-stage procedure for assigning weights for 

robust estimators based on implicit weights. Section 2 is devoted to a robust correlation 

coefficient based on the least weighted squares, which is accompanied by a permutation test 

and by a bootstrap-based confidence interval. Their performance is illustrated on an economic 

data set in Section 3. Section 4 illustrates a bootstrap estimator of variance of the MWCD 

estimator of parameters of multivariate data on real data.  
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1 Choice of the weights for implicitly weighted estimators 

The choice of suitable weights is an important parameter in the process of applying implicitly 

weighted estimators in various models. This section recalls several available possibilities for 

the choice of weights and also proposes novel kernel-based weights, which will be used in the 

examples throughout the paper. 

      Some examples of weights, which are suitable for various implicitly weighted estimators 

(e.g. the LWS-based correlation coefficient or the MWCD estimator) include: 

 Zero-one weights, used in e.g. least trimmed squares (LTS) or minimum covariance 

determinant (MCD) estimators, 

 Linearly decreasing weights (Kalina, 2012), 

 Weights generated by a (given) non-increasing function, 

 Data-dependent adaptive weights of Čížek (2011). 

       The first three choices of fixed weights are not sufficiently flexible, while the only 

adaptive proposal is computationally rather complicated. Therefore, we will now propose 

novel data-dependent weights assigned by a two-stage rule as an alternative. The weights are 

denoted as kernel-based weights.  

       First, an initial highly robust estimator must be chosen and computed for the given data. 

Residuals of individual observations will be denoted as 𝑢1
0, … , 𝑢𝑛

0 . In the second stage, 

weights are obtained by means of a given kernel 𝐾 as 𝑤𝑖 = 𝐾(𝑢𝑖
0) for 𝑖 = 1, … , 𝑛.  

       The construction of kernel-based weights resembles kernel-based nonparametric 

regression estimators (see e.g. Matioli et al. (2017)), particularly the popular Nadaraya-

Watson estimator. The proposal of kernel-based weights is simple, its computation is 

straightforward and the weights allow a clear interpretation. As an important useful example, 

let us mention the Gaussian kernel  

                                                   𝐾(𝑥) =
1

√2𝜋
exp {−

𝑥2

2
} ,   𝑥 ∊ ℝ,                                           (1) 

which will be used in examples throughout the paper.  

 

2 Robust correlation coefficient  

This section is devoted to a robust correlation coefficient based on the LWS. We accompany 

this implicitly weighted correlation coefficient by a permutation test as well as by a more 

detailed description of two types of a bootstrap confidence interval. These methods will be 

illustrated in Section 3 on a numerical example. 
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       Independent identically distributed (i.i.d.) measurements coming from two random 

variables 𝑋 = (𝑋1, … , 𝑋𝑛)𝑇 and 𝑌 = (𝑌1, … , 𝑌𝑛)𝑇 from a continuous distribution are 

considered. Their true (i.e. population) but unknown value of the correlation coefficient will 

be denoted by 𝜌. The robust correlation coefficient 𝑟𝐿𝑊𝑆 (Kalina & Schlenker, 2015) is 

obtained as the weighted Pearson correlation coefficient with such weights, which are found 

as optimal by the LWS estimator in the linear regression model  

                                                   𝑌𝑖 =  𝛽0 +  𝛽1𝑋𝑖 + 𝑒𝑖,   𝑖 = 1, … , 𝑛.                                     (2) 

 Known properties of 𝑟𝐿𝑊𝑆 include its high breakdown point or asymptotic normality; 

an asymptotic test of 𝐻0: 𝜌 = 0 based on 𝑟𝐿𝑊𝑆  was proposed by Kalina & Schlenker (2015). 

        

2.1 A permutation test 

A permutation test of 𝐻0: 𝜌 = 0 against 𝐻1: 𝜌 ≠ 0 is a standard tool considering all possible 

permutations of the pairs of observations. Let us consider a permutation 𝜋 of indices 

1,2, … , 𝑛, i.e. a bijection from {1, … , 𝑛} to {1, … , 𝑛} and the 𝑖-th coordinate of 𝑋 is 𝑋𝜋(𝑖). The 

test is based on a repeated evaluating of 𝑟𝐿𝑊𝑆 between (𝑋𝜋(1), … , 𝑋𝜋(𝑛))𝑇 and  (𝑌1, … , 𝑌𝑛)𝑇 . 

Thus, the standard permutation test can be exploited for any estimator of 𝜌 and we do not to 

describe here the particular version based on the highly robust coefficient 𝑟𝐿𝑊𝑆.  

 

2.2 A bootstrap confidence interval 

Further, we propose two versions of a bootstrap confidence interval for the population 

correlation coefficient 𝜌, which will be based again on 𝑟𝐿𝑊𝑆. First, a naïve confidence interval 

can be constructed as 

                                       [𝑟𝐿𝑊𝑆 − 1.96√𝑣𝑎𝑟 𝑟𝐿𝑊𝑆 , 𝑟𝐿𝑊𝑆 + 1.96√𝑣𝑎𝑟 𝑟𝐿𝑊𝑆],                         (3) 

where the variance of the robust correlation coefficient is estimated by bootstrap in a standard 

way as the variance of the bootstrap distribution, i.e. empirical distribution of the bootstrap 

samples.  

     A more standard confidence interval exploiting the bootstrap distribution, i.e. empirical 

distribution obtained from bootstrap samples, is proposed in the following Algorithm. 

 

Algorithm 1. Bootstrap confidence interval for 𝜌 based on 𝑟𝐿𝑊𝑆. 

Input: Data (𝑋1, … , 𝑋𝑛)𝑇 and (𝑌1, … , 𝑌𝑛)𝑇, number of repetitions 𝐾 
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Output: Bootstrap confidence interval for 𝜌 

1. For 𝑘 = 1 to 𝐾 do 

2. Generate 𝑛 bootstrap samples 

                                                     (𝑋𝑗
(𝑘)

, 𝑌𝑗
(𝑘)

),    𝑗 = 1, … , 𝑛,                                             (4) 

by sampling with replacement from the original set of data rows (𝑋𝑖, 𝑌𝑖) with 𝑖 = 1, … , 𝑛. 

3. Compute 𝑟𝐿𝑊𝑆 between  

                                         (𝑋1
(𝑘)

, … , 𝑋𝑛
(𝑘)

)   and (𝑌1
(𝑘)

, … , 𝑌𝑛
(𝑘)

),                                       (5) 

store the value and denote it as 𝑟𝑘. 

4. End for 

5. Arrange the values in ascending order as 𝑟(1) < ⋯ < 𝑟(𝐾). 

6. Construct the 95 % confidence interval as 

                                                            [𝑟(⌊ℎ⌋), 𝑟(⌊𝑛−ℎ⌋)],                                                      (6) 

where ℎ = ⌊0.025𝑛⌋ and ⌊𝑥⌋ denotes the greatest integer less than or equal to 𝑥. 

 

Fig. 1: The data set investigated in Section 3. 

 

Source: an artificial data set created by the author 

       In general, bootstrap estimates require to derive their properties for each particular task, 

although this is typically ignored in practical applications, mainly because it is rather 

complicated to derive consistency or expression for the bias for bootstrap estimates or 
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confidence intervals. Such formal investigation of properties of the bootstrap confidence 

intervals would be however necessary also in our case, in spite of the fact that 𝑟𝐿𝑊𝑆 is 

a consistent estimator of 𝜌 under the assumption of bivariate normality of (𝑋, 𝑌)𝑇 .  

 

3 Example: robust correlation coefficient 

An artificial data set of Figure 1 is considered with 22 measurements of two continuous 

variables. The data were manually constructed as a mixture of a linear trend with severe 

contamination. We computed the Pearson’s correlation coefficient as well as 𝑟𝐿𝑊𝑆 with the 

weights according to the Gaussian kernel (1), where the correlation coefficient based on the 

least trimmed squares with ℎ = 11 is used as the initial robust estimate.  

       Further, we applied methods of Section 2. The permutation test of 𝐻0: 𝜌 = 0 against 

𝐻1: 𝜌 ≠ 0 as well as the bootstrap confidence intervals for 𝜌 based on 𝑟 or 𝑟𝐿𝑊𝑆 were 

computed. The asymptotic test based on 𝑟 is the standard 𝑡-test, while the asymptotic test 

based on 𝑟𝐿𝑊𝑆 exploits the formula of Kalina & Schlenker (2015). The classical confidence 

interval based on 𝑟 based on the asymptotic normality, was computed using the function 

cor.test() in R software. We implemented all other confidence intervals in R software. 

              

Tab. 1: Results of the example of Section 3. 

 

Method 

Result of tools 

based on 𝑟 

Result of tools 

based on 𝑟𝐿𝑊𝑆 

Correlation coefficient 0.55 0.60 

Permutation test 𝑝 = 0.0042 𝑝 = 0.0033 

Asymptotic test 𝑝 = 0.0076 𝑝 = 0.0059 

Classical (asymptotic) confidence interval [0.17, 0.79] [0.18, 0.86] 

Bootstrap confidence interval (Alg. 1) [0.23, 0.79] [0.21, 0.87] 

Naïve bootstrap confidence interval (3) [0.21, 0.89] [0.19, 0.83] 

Source: own computation 

       The results of all computations, which were performed in R software, are shown in 

Table 1. Both the permutation and asymptotic test are highly significant. The number of 

observations is not high enough to have the confidence intervals narrower, although it suffices 

for a significant corresponding test. The naïve interval (3) is the only one centered around 

𝑟𝐿𝑊𝑆, which is however not a desirable property due to asymmetry of the distribution of 𝑟𝐿𝑊𝑆; 

the symmetry is redeemed by an assumption of normality which is not fulfilled. In fact, we 
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understand the standard bootstrap confidence interval to be the best among the three presented 

intervals, because it is the narrowest, non-asymptotic and also uses the complete information 

about the whole bootstrap distribution. It is at the same time computationally well feasible 

although demanding more bootstrap samples compared to (3).  

 

4 Comparison of multivariate estimators  

The aim of this section is to compare robust multivariate estimators on a real data set. While 

the variance of estimators is their important characteristic, the comparison will be based on 

bootstrap estimates of the variance of the MCD and the minimum weighted covariance 

determinant (MWCD) estimators. 

       I.i.d. multivariate data will be assumed coming from an elliptical distribution like in 

Roelant et al. (2009), who proposed the MWCD estimator of the population mean denoted 

as 𝑋̅𝑀𝑊𝐶𝐷 . The MWCD, which can be understood as a compromise between classical 

estimates and the MCD, minimizes the determinant of the weighted covariance matrix over all 

possible permutations of weights. We are interested in bootstrap estimation of 

𝑣𝑎𝑟 𝑋̅𝑀𝑊𝐶𝐷,  while the MWCD is known to lower the bias of the MCD (Roelant et al., 2009).  

     The asymptotic variability of the MWCD-mean is too complicated to be formally proven. 

Therefore, a bootstrap estimator was applied already by Willems and van Aelst (2004) for 

estimating 𝑣𝑎𝑟𝑋̅𝑀𝑊𝐶𝐷 corresponding to the minimum covariance determinant (MCD) 

estimator. The MCD corresponds to the MWCD with zero-one weights. It is obtained as the 

classical mean computed only for such ℎ observations, which minimize the determinant of the 

covariance matrix over all possible ℎ-subsets of observations.  

       Nevertheless, neither consistency nor asymptotic bias has been formally investigated for 

their bootstrap estimator. The bootstrap estimator for the variance of the MWCD-mean can be 

computed in a standard way as the variance of the bootstrap distribution. 

      The following example has the aim to compare multivariate estimators on a real data set 

as well as to compare to illustrate the bootstrap estimates of their variance. The 3-dimensional 

phosphorus data set, which is publicly available (Rousseeuw & Leroy, 1987), contains 𝑛 =

18 measurements of 3 variables, namely inorganic, organic and plant phosphorus content in 

soil. The data set does not contain severe outliers. We compute three estimators of the mean 

and covariance matrix of the data: 

 The maximum likelihood estimators. For the mean  𝑋̅, we used 𝑣𝑎𝑟 𝑋̅ = 𝛴 𝑛⁄ , which 

was estimated by 𝑆 𝑛⁄ .   
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 The MCD estimator with default parameters (i.e. its reweighted version).      

 The MWCD estimator with kernel-based weights (1) using the MCD with ℎ = 10 as 

the initial estimator. 

       Table 2 presents the results of the computations performed in R software. The main result 

of the computations is a clear loss of the efficiency of the MCD estimator  much compared to 

maximum likelihood estimates. On the other hand, the MWCD is able to yield reliable results 

with variability estimates much closer to the maximum likelihood estimates. Thus, the results  

reveal that the MWCD estimator is able to combine the robustness with efficiency, which is 

a very desirable property.  

 

Tab. 2: Results of the example of Section 4. Estimates of the population mean of the 

three variables measuring phosphorus of different origin in soil. Three estimators are 

presented together with bootstrap estimates of their standard deviations. 

 𝑋1 (inorganic) 𝑋2 (organic) 𝑋3 (plant) 

Maximum likelihood 11.9 

(0.56) 

42.1 

(0.76) 

81.3 

(1.50) 

MCD 11.7 

(2.84) 

39.7 

(3.60) 

76.1 

(5.01) 

MWCD 11.7 

(0.89) 

40.3 

(1.22) 

77.9 

(2.46) 

Source: own computation 

 

Conclusion 

This paper is devoted to two implicitly weighted robust methods applicable to econometrics 

and fills the gap of additional tools for these methods, namely an LWS-based robust 

correlation coefficient 𝑟𝐿𝑊𝑆 and the MWCD estimator.  

       While the data of Section 3 do not contain severe outliers, the inference based on 𝑟𝐿𝑊𝑆 

yields results resembling those obtained with the Pearson’s correlation coefficient 𝑟. We can 

say that the approach based on 𝑟𝐿𝑊𝑆 does not seem to lose much information and seems 

suitable for non-contaminated data as well. Robust properties of 𝑟𝐿𝑊𝑆 are granted (Kalina & 

Schlenker, 2015). For 𝑟𝐿𝑊𝑆, we elaborated possible resampling approaches in a more detailed 

way and compared two different approaches to bootstrap confidence intervals. 

       The example of Section 4 with multivariate data brings arguments in favor of the MWCD 

estimator. It is very desirable that robust methods are efficient for non-contaminated data, 
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which seems to be true in the example. The MWCD estimator is guaranteed to improve bias 

(Roelant et al., 2009) and the example shows that it can improve efficiency as well. 

       Two different resampling techniques, namely a permutation test and bootstrap estimation, 

are conceptually rather different, although both are based on computationally demaning 

resampling, While the permutation principle (i.e. resampling without replacement) allows to 

construct reliable hypotheses tests, bootstrapping yields reliable confidence intervals but not 

p-values of corresponding hypothesis tests. Also different techniques must be used to derive 

their properties, while bootstrap estimates require to prove their properties for each particular 

situation, while permutation tests are generally valid. 

       Sometimes, permutation tests are claimed to require to perform all permutations. If 

however the user performs only a (sufficiently large) random sample of permutations, then the 

test would be sometimes called a bootstrap test without replacement rather than a permutation 

test. In fact, bootstrapping has not much penetrated to hypothesis testing although systematic 

comparisons of permutation tests and bootstrap tests can be also found in the literature. 

However, such comparisons have been however performed in rather particular problems, see 

e.g. the comparison by Hušková and Kirch (2012) for the change-point problem.  

      As a future work, it is intended to perform a simulation study showing how fast the 

permutation test based on 𝑟𝐿𝑊𝑆 converges to the asymptotic test. In addition, we would like to 

propose an improved approximate algorithm for computing the MWCD estimator and to 

investigate its computational aspects.  
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