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Abstract 

Recently, there has been a growth of demand for robust parameter estimation methods. One of 

the reasons for this growth is an extensive usage of big data, since with a growing number of 

observations, the probability of outlier presence also rises. With an outlier presence, it is 

highly recommended to work with robust methods because standard methods are not able to 

deal correctly with outliers, and, consequently, standard estimates are usually biased. 

Autoregressive process AR(p) is well known and widely used in statistics and economical 

modelling. It is very important to estimate parameters of this model correctly, and we show 

the suitability of robust methods for this task. We present several robust methods and compare 

them with a standard method using a simulation study. Additive outlier (AO) model and 

innovative outlier (IO) model are used in the simulations to contaminate data with outliers. 

For the simulation study, we use the R statistical software. 
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Introduction 

AR(p) process is well-known and widely used as one of the process which can explain the 

residue of randomness in a random process. Often, Box-Jenkins methodology (Box, 1970) is 

used to identify an appropriate process which we could use to represent our data or residues. 

The Box-Jenkins methodology has several steps. Firstly, we need to solve the seasonality and 

the stationarity of the process. Secondly, we estimate ARMA orders and then we can estimate 

the parameters. The second step, meaning the ARMA order determination, was the main point 

of interest in our paper (Flimmel, 2017) at the last conference. This year, we focus on the final 

step – parameter estimation. 

Currently, when we face the big data problems, the importance of using robust 

methods is growing. Robust methods are usually more insensitive to outliers and they give 

better estimation in the case of outlier presence, as it was already shown by (Chan,1992).  
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A comprehensive overview of the most important robust methods for ACF estimation 

was made by (Dürre, 2015). For a more detailed description of the methods you can see 

(Maronna, 2006), (Ma, 2000) or others. 

In Section 1, we establish some notation that we work with in this paper. In Section 2, 

we briefly introduce two robust methods and a standard method that we use in our 

comparison. In Section 3, we show results from our simulation study used to compare the 

methods. 

 

1 Definitions and notation 

Let us define Gaussian white noise, which is a zero-mean mutually uncorrelated time series 

 0, Nnn   with an unknown constant variance 02  . 

We define an autoregressive process AR(p) by the equation 

,2211 npnpnnn XXXX         
(1) 

where    p

p R ,,, 21  is a vector of parameters,  0, Nnn   
is the white noise and 

.0p  

We define an autocovariance function of the lag k R(k) of the stationary process 

 0, NnX n   as   

  ,)( 0   XXEkR k      
(2) 

where μ is the expected value of the process. 

Let us define an autocorrelation function (ACF) of the lag k )(k  of the stationary 

process  0, NnX n 
 
as 
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where 
2

X  is the variance of the process. 

 

2 Estimation methods 

Let us briefly introduce all methods that we use in our simulation study. Firstly, we need to 

estimate an autocorrelation function of the process. We have m+1 observations 

mXXX ,,, 10  , from which we estimate the ACF. 

Let us start with a standard method, e.g. according to (Hamilton, 1994): 
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where X  is the average of mXXX ,,, 10  . 

We introduce two robust methods: a method based on the Gnanadesikan-Kettenring 

approach and a method based on robust filtering. 

The method based on the Gnanadesikan-Kettenring approach, which was introduced 

by (Gnanadesikan and Kettenring, 1972), is defined as 

,
)()(

)()(
)(ˆ

22

22

vuQvuQ

vuQvuQ
k

kmkm

kmkm

GK







     
(5) 

where u is the vector ),,,( 1 mkmkm XXX  , v is the vector ),,,( 10 kXXX   and 
mQ is a 

robust estimator of the scale. It was proposed by (Croux, 1992) and it is defined as: 

  ,,
ljim jiXXcQ 

    
(6) 

where  l is the lth order statistic, and l is defined as 
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where    
denotes the floor function. The factor c is for consistency, for the Gaussian 

distribution c =  2.2191. The method of this robust ACF estimator was presented by (Ma, 

2000). 

The robust filtering approach takes the time series structure into account. The idea is 

to have robust filtered values instead of original observations and calculate the ACF from 

these filtered values. Practically, we replace outliers by some reasonable values. 

Firstly, we estimate a “long” AR process, which we use for robust filtering. 

Consequently, we obtain fitted values using the robustly filtered τ-scale estimate and, finally, 

we calculate the autocorrelation function. The method of this robust ACF estimator was 

presented by (Maronna, 2006). 

When we already have the estimation of the ACF, we are able to estimate parameters 

of the AR(p) model using the moment method: 
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The moment method can be used for each ACF estimator. Therefore, we have 3 different 

parameter estimator that we compare in a simulation study. 

 

3 Simulation study 

The simulation study was designed in the R software and we use the R package robts. 

However, the package is still not approved by CRAN, thus a number of functions was coded 

by authors of this paper to validate correctness of the package. After the validation, we used 

functions from the package to obtain estimations in the simulation study. 

To evaluate estimation accuracy we use mean absolute error (MAE) and mean 

absolute percentage error (MAPE). The mean absolute error is given by 
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where 
ji̂ is an estimation of the i-th simulation and j-th component of the vector of 

parameters, and s is the number of simulations. 

The mean absolute percentage error is defined by 
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where 
ji̂ is an estimation of the i-th simulation and j-th component of the vector of 

parameters, and s is the number of simulations. 

Firstly, we have the 3 simplest models: AR(1), AR(2) and AR(3). For the probability 

of outliers being present in one simulation (ε), we choose 3 cases: ε = 0%, ε = 1% and ε = 5%. 

Therefore, because of the 3 models and 3 outlier probabilities, we have 9 different cases. For 

every case, we run 5000 simulations with 1000 observations. 

In each case, we estimate all parameters of the model using all 3 described methods. 

The accuracy of the method is evaluated by 2 mentioned criterion: MAE and MAPE. 

Model parameters are chosen randomly. Absolute values of the parameters are 

generated with a uniform distribution, i.e.   .0.1,2.0~ Ui  Values close to zero are not taken 

into account because they are difficult to observe. The sign of the parameters is generated 
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randomly using Bernoulli’s distribution with the probability of success π= 0.5. Subsequently, 

we check whether these parameters give a stationary process, and, if necessary, we repeat the 

procedure. 

Secondly, we work with the models AR(p) for p = 1, ..., 5. Once again, we have the 

same 3 probabilities of outliers being present in a simulation, and for every probability value 

we run 5000 simulations with 1000 observations. Subsequently, all estimated parameters are 

evaluated, using a box plot to have a graphical representation of the results. 

We use an additive outlier model and an innovative outlier model (see e.g. Maronna, 

2006) in the simulation study, which are described in the following 2 subsections.  

 

1.1 Additive outlier model 

We work with the additive outlier (AO) model in this subsection. Firstly, we show Table 1, 

where we see a comparison of the 3 above described methods.  

  

Tab. 1: Comparison of 3 methods using the AO model 

model k  
criteria 

standard method GK approach 
robust filtering 

approach 

0% 1% 5% 0% 1% 5% 0% 1% 5% 

AR(1) 1  
MAE .0187 .1720 .3793 .0204 .0211 .0270 .0205 .0205 .0209 

MAPE 4.2% 33.5% 68.8% 4.6% 4.7% 5.6% 4.6% 4.7% 4.7% 

AR(2) 

1  
MAE .0200 .1964 .3861 .0243 .0259 .0483 .0543 .0560 .0778 

MAPE 4.5% 34.4% 68.5% 5.3% 5.4% 8.8% 13.8% 13.6% 17.1% 

2  
MAE .0201 .1902 .3737 .0238 .0256 .0465 .0615 .0650 .0945 

MAPE 4.8% 39.3% 71.8% 5.7% 5.9% 9.2% 12.1% 12.6% 17.4% 

AR(3) 

1  
MAE .0227 .2174 .3981 .0461 .0477 .0770 .0284 .0291 .0320 

MAPE 4.9% 39.7% 71.5% 8.9% 10.2% 14.4% 6.1% 6.2% 6.6% 

2  
MAE .0228 .2034 .3679 .0464 .0458 .0787 .0325 .0342 .0405 

MAPE 5.3% 40.5% 71.3% 10.5% 10.4% 16.3% 7.8% 8.2% 9.7% 

3  
MAE .0234 .2197 .3781 .0473 .0492 .0871 .0322 .0336 .0405 

MAPE 5.6% 48.6% 78.2% 11.4% 11.5% 19.6% 7.4% 7.7% 8.9% 

Source: Authors’ own calculations 

We can see that the standard method is not able to process the outliers. By increasing 

the probability of outlier presence, which means more outliers present in the observations, the 
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accuracy of parameter estimation decreases drastically. Naturally, the standard method gives 

the best results in the case of no outliers in the observations. However, the differences 

between the standard method and the robust methods are quite small.  

The robust filtering approach is more sophisticated and should give better results, but 

it is not true in the case of AR(2). It was quite surprising and, consequently, additional 

simulations for this special case were made. Additional simulations confirmed worse results 

for AR(2) in comparison with the GK approach. The reason why the robust filtering approach 

is better in AR(1) and AR(3), and not in AR(2), is unknown and will be explored. However, 

the main message of the table is the incapability of the standard method to work with outliers. 

On the other hand, the robust methods are much less sensitive to outliers. 

Secondly, we show Figure 1 with boxplots of errors (simple difference between the 

estimates and the real parameters), where we see a dramatic increase of boxplot size in the 

case of the standard method. The parameter estimation is much more volatile and inaccurate 

in comparison with the robust methods. The robust filtering approach looks a little better (it is 

slightly less volatile) than the GK approach because of a smaller difference between the first 

and the third quartile. We should also mention that the GK approach gave a few extreme 

estimation errors (~ ±10). 

 

Fig. 1: Boxplots of 3 methods using AO model 

 

Source: Authors’ own calculations 

 

-0,4000

-0,2000

0,0000

0,2000

0,4000

0,6000

0% 1% 5% 0% 1% 5% 0% 1% 5%

standard method GK approach robust filtering
approach



The 12th International Days of Statistics and Economics, Prague, September 6-8, 2018 

467 
 

1.2 Innovative outlier model 

We work with the innovative outlier model in this subsection. Firstly, we show Table 2, 

where we see a comparison of the 3 above described methods.  

  

Tab. 2: Comparison of 3 methods using IO model 

model k  
criteria 

standard method GK approach 
robust filtering 

approach 

0% 1% 5% 0% 1% 5% 0% 1% 5% 

AR(1) 1  
MAE .0189 .0179 .0177 .0204 .0225 .0460 .0207 .0203 .0228 

MAPE 4.3% 4.0% 4.0% 4.6% 4.8% 8.4% 4.7% 4.6% 4.9% 

AR(2) 

1  
MAE .0201 .0190 .0189 .0242 .0270 .0540 .0539 .0604 .1155 

MAPE 4.5% 4.2% 4.2% 5.2% 5.7% 10.8% 13.6% 14.3% 25.3% 

2  
MAE .0202 .0193 .0194 .0238 .0273 .0579 .0611 .0656 .1014 

MAPE 4.9% 4.6% 4.6% 5.7% 6.3% 13.1% 12.2% 12.9% 21.0% 

AR(3) 

1  
MAE .0233 .0216 .0208 .0543 .0636 .1450 .0298 .0401 .0987 

MAPE 4.9% 4.6% 4.4% 10.9% 12.3% 27.0% 6.4% 8.5% 21.9% 

2  
MAE .0230 .0220 .0214 .0517 .0592 .1253 .0327 .0489 .1127 

MAPE 5.4% 5.1% 5.0% 11.3% 13.1% 26.5% 8.0% 11.7% 28.4% 

3  
MAE .0239 .0232 .0218 .0549 .0644 .1365 .0325 .0451 .0993 

MAPE 5.7% 5.5% 5.2% 12.9% 15.1% 34.0% 7.5% 10.2% 22.5% 

Source: Authors’ own calculations 

We can see that innovative outliers affect the standard estimation minimally. MAPE 

results are almost constant in the sense of outlier probabilities. Actually, they slightly decrease 

with increasing outlier probability. Overall, it seems that the standard non-robust method is 

able to work with this type of outliers. 

On the contrary, both robust methods show worse results in comparison with the 

standard approach. For AR(1), the robust filtering approach gives at least similar results as the 

standard approach, but AR(2) and AR(3) cases do not confirm this behavior.  

We can see again worse results of the robust filtering approach for the AR(2) case. It 

shows a certain confirmation of the phenomenon which was pointed out for the AO model. 

Despite this abnormality, the robust filtering approach gives better results for the remaining 

models AR(1) and AR(3), in comparison with the GK approach. 
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Secondly, we show Figure 2 with boxplots of errors (simple difference between the 

estimates and the real parameters). 

 

Fig. 2: Boxplots of 3 methods using AO model 

 

Source: Authors’ own calculations 

Fig. 2 confirms the numbers from Table 2, since the size of the boxplots is almost 

constant for the standard approach. However, for the both robust methods, the size of the 

boxplots grows. For the GK approach, it grows slightly more. We should remind that the scale 

of Figure 2 is more detailed in comparison with Figure 1, where the difference was even more 

dramatic. 

 

Conclusion 

We briefly introduced a standard method and two robust methods for ACF estimation. Using 

ACF estimators, we presented an estimation of the parameters for AR(p) model. 

 We provided a simulation study where we compared the methods. The AOs have a 

strong impact on the standard method and we should not use this method in such situations. 

Both robust methods gave better results than the standard method. The method based on 

robust filtering looked even slightly better than the method based on the GK approach, except 

for the AR(2) model, which should be studied in more detail. 

On the other hand, the IOs have no impact on the standard method, however, the 
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the standard approach in the case of the IOs. Even in our last paper (Flimmel, 2017), it was 

shown that current robust methods have problems with this type of outliers. 

In conclusion, we would recommend to check the outlier presence at first. Then we 

should try to detect the nature of outliers. If we detect innovative outliers, we should use the 

standard method. But if we detect additive outliers, we should definitely use one of the robust 

methods, otherwise we risk to estimate the parameters incorrectly. 
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