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FOR REGRESSION ESTIMATORS 
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Abstract 

Metalearning represents a useful methodology for selecting and recommending a suitable 

algorithm or method for a new dataset exploiting a database of training datasets. While 

metalearning is potentially beneficial for the analysis of economic data, we must be aware of 

its instability and sensitivity to outlying measurements (outliers) as well as measurement 

errors. The aim of this paper is to robustify the metalearning process. First, we prepare some 

useful theoretical tools exploiting the idea of implicit weighting, inspired by the least 

weighted squares estimator. These include a robust coefficient of determination, a robust 

version of mean square error, and a simple rule for outlier detection in linear regression. 

    We perform a metalearning study for recommending the best linear regression estimator for 

a new dataset (not included in the training database). The prediction of the optimal estimator 

is learned over a set of 20 real datasets with economic motivation, while the least squares are 

compared with several (highly) robust estimators. We investigate the effect of variable 

selection on the metalearning results. If the training as well as validation data are considered 

after a proper robust variable selection, the metalearning performance is improved 

remarkably, especially if a robust prediction error is used. 
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Introduction  

Metalearning can be characterized as a useful tool for selecting a suitable (optimal) algorithm 

or method for a new dataset exploiting a database of training datasets. Within metalearning, 

the knowledge acquired over a training database serves as a prior information which can be 

incorporated to analyzing new datasets (Smith-Miles et al., 2014). Metalearning may be also 

alternatively denoted as methodology for optimal selection of algorithms (Mersmann et al., 

2015).  
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     The concept of metalearning has established its position in the machine learning 

community (particularly in the field of automated statistical learning) and has found 

applications in various tasks of optimization, computer science, and data mining and also (but 

with a smaller intensity) in econometrics. The design of a metalearning study requries the user 

to carefully choose five basic categories of input, which were denoted as P, A, F, Y and S by 

Smith-Miles et al. (2014): 

[P]      Problem (i.e. datasets), 

[A]      Algorithms (i.e. methods), 

[F]      Features (also denoted as metadata), 

[Y]      Prediction measure, 

[S]      Selection mapping (i.e. metalearning method). 

       This paper is interested in comparing estimators of parameters in the linear regression. 

Because the least squares estimator in the linear regression is very well known to suffer from 

the presence of outlying measurements (outliers), various robust estimators have been 

proposed as more resistant alternatives (Jurečková et al., 2019). A metalearning study for 

selecting the best one among various robust estimators was presented already by Peštová & 

Kalina (2018). There, however, a rather standard (non-robust) approach to metalearning was 

performed. The aim of the current paper is to increase the robustness of this metalearning 

procedure by means of prior variable selection and at the same time some newly proposed 

robust statistical tools. Recommending an estimator will be based on comparing a selected set 

of features (including robust ones) computed over a new dataset with those computed over  

training datasets. 

      Section 2 of the paper recalls the least weighted squares (LWS) estimator, which is one of 

promising estimator with a high robustness (if suitable weights are used). Robust measures of 

prediction error, including a novel version based on implicit weighting, are proposed in 

Section 3. The metalearning study is described in Section 4 and its results are presented in 

Section 5.  

 

1 Least weighted squares estimator   

This section recalls the LWS estimator proposed by Víšek (2011). The standard linear 

regression model 

                            𝑌𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ +  𝛽𝑝𝑋𝑖𝑝 + 𝑒𝑖,   𝑖 = 1, … , 𝑛,                                     (1) 
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is considered, where 𝑌1, … , 𝑌𝑛 are values of a continuous response variable and 𝑒1, … , 𝑒𝑛 are 

random errors (disturbances) with a common value of 𝑣𝑎𝑟 𝑒𝑖 = 𝜎2, where 𝜎 > 0. The task is 

to estimate the regression parameters 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)𝑇 . The classical least squares 

estimator denoted as 𝑏𝐿𝑆  is very well known to be too vulnerable to the presence of outlying 

measurements (outliers) in the data (Jurečková et al., 2019). 

    The least trimmed squares (LTS) estimator of 𝛽 investigated e.g. by Rousseeuw and van 

Driessen (2006) is currently the most commonly used  robust regression estimator with a high 

breakdown point. Its weighted version is the LWS estimator, which assigns implicitly given 

weights to individual observations. The formal definition of the LWS requires the user to 

specify a sequence of magnitudes of weights 

                                                  𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛 ,   ∑ 𝑤𝑖 = 1,𝑛
𝑖=1                                       (2) 

which are assigned to individual observations only after some permutation.  

       In (1), let us denote squared residuals corresponding to a given estimator 𝑏 of 𝛽 as 𝑢𝑖(𝑏). 

We will consider arranged values of squared residuals 

                                                𝑢(1)
2 (𝑏) ≤ 𝑢(2)

2 (𝑏) ≤ ⋯ ≤ 𝑢(𝑛)
2 (𝑏),                                          (3)   

which allow to express the definition of the LWS estimator 𝑏𝐿𝑊𝑆 in the form 

                                                    arg min
𝑏∊ℝ𝑝+1

∑ 𝑤𝑖𝑢(𝑖)
2 (𝑏).𝑛

𝑖=1                                              (4)  

The LWS estimator has appealing properties (see the discussion in Kalina (2013)) and the 

estimator also turns out to perform well on real data (Kalina & Schlenker, 2015).  

     While the weight selection influences the LWS estimate, we recommend to assign a zero 

weight to some (at least small) percentage of observations, which ensures a high robustness. 

The LWS estimator remains consistent for any non-increasing weights (Víšek, 2011). 

     Let us now define novel weights for the LWS denoted as trimmed linear weights. We 

assume now the true level of contamination to be equal to 𝜀 · 100 % with 𝜀 ∊ [0, 1 2⁄ ). We 

define ℎ = ⌈(1 − 𝜀)𝑛⌉, where ⌈𝑥⌉ = 𝑚𝑖𝑛{𝑛 ∊ ℕ; 𝑛 ≥ 𝑥}, and use the notation I for indicator 

function. The trimmed linear weights are now defined as  

                                                    𝑤𝑖 =
ℎ−𝑖+1

ℎ
𝐼[𝑖 ≤ ℎ],    𝑖 = 1, … , 𝑛.                                       (5) 
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     Already for n exceeding (about) 20, the computation of the LWS estimator must exploit 

an approximate algorithm obtained as a weighted extension of the FAST-LTS algorithm of 

Rousseeuw & van Driessen (2006).  

      

1.1 Outlier detection 

We propose a novel approach for estimating the number of outliers in a dataset assuming the 

model (1). We compute the LWS estimator and to avoid confusion, its residuals will be 

denoted as 𝑢1
𝐿𝑊𝑆, … , 𝑢𝑛

𝐿𝑊𝑆. We also need �̂�𝐿𝑊𝑆 , which denotes the estimator of σ obtained 

in (1) by the LWS estimator; using a constant 𝛾 > 0 evaluated in Víšek (2010), we use  

                                                          �̂�𝐿𝑊𝑆
2 =

1

𝑛𝛾
∑ �̃�𝑖𝑢𝑖

2𝑛
𝑖=1 ,                                                     (6) 

which ensures �̂�𝐿𝑊𝑆
2  to be a consistent estimator of 𝜎2 for the particular choice of weights. 

The optimal weights found by the LWS in (1), i.e. after the optimal permutation, are denoted 

as �̃�1, … , �̃�𝑛. We propose the following simple rule for outlier detection in (1). An 

observation with index 𝑖 (𝑖 = 1, … , 𝑛) is considered to be outlying, if and only if 

                                                                   
|𝑢𝑖

𝐿𝑊𝑆|

�̂�𝐿𝑊𝑆
≥ 2.5.                                                           (7) 

 

1.2 Weighted coefficient of determination 

Further, we propose a novel weighted coefficient of determination, again based on the idea of 

implicit weighting. The standard coefficient of determination 𝑅2 is defined as 

                                                         𝑅2 = 1 −
∑ 𝑢𝑖

2𝑛
𝑖=1

∑ (𝑌𝑖−�̅�)2𝑛
𝑖=1

                                                       (8) 

and it is natural to propose its robust (implicitly weighted) version (say 𝑅𝑊
2 ) as   

                                                     𝑅𝑊
2 = 1 −

∑ �̃�𝑖 𝑢𝑖
2𝑛

𝑖=1

∑ �̃�𝑖(𝑌𝑖−�̅�𝑊)2𝑛
𝑖=1

                                                    (9) 

with weights �̃�1, … , �̃�𝑛 equal to the optimal weights found by the LWS in (1), i.e. after the 

optimal permutation. We may interpret 𝑅𝑊
2  as a generalization of the implicitly weighted 

robust correlation coefficient of Kalina & Schlenker (2015) or an implicitly weighted analogy 

of the robust 𝑅2 of Renaud & Victoria-Feser (2010). The definition (9) is meaningful, because 

the sums of squares can be decomposed as in the classical case, namely as in the form 



The 13th International Days of Statistics and Economics, Prague, September 5-7, 2019 

621 
 

                            ∑ �̃�𝑖(𝑌𝑖 − �̅�𝑊)2 =𝑛
𝑖=1 ∑ �̃�𝑖(𝑌𝑖 − �̂�𝑖)

2
+𝑛

𝑖=1 ∑ �̃�𝑖(�̂�𝑖 − �̅�𝑊)
2

,𝑛
𝑖=1                  (10)       

where �̂�𝑖 denotes the fitted value of the 𝑖-th observation, �̅�𝑊 denotes the weighted mean �̅�𝑊 =

∑ �̃�𝑖
𝑛
𝑖=1 𝑌𝑖, and 𝑢𝑖 = 𝑌𝑖 − �̂�𝑖 for  𝑖 = 1, … , 𝑛 are the residuals. 

2 Robust measures of prediction error 

In the metalearning study of Section 4, we use three different measures of prediction error for 

a given  dataset. The notoriously popular measure of prediction error for the model (1) is the 

mean square error (MSE) defined as 

                                                             𝑀𝑆𝐸 =
1

𝑛
∑ 𝑟𝑖

2𝑛
𝑖=1 ,                                                      (11) 

where 𝑟𝑖 = 𝑌𝑖 − �̂�𝑖 are prediction errors and �̂�𝑖 denotes the fitted value of the 𝑖-th observation 

for 𝑖 = 1, … , 𝑛. The standard MSE however suffers from the presence of outliers in the data. 

      A possible robust alternative is the trimmed mean square error (TMSE) defined as 

                                                          𝑇𝑀𝑆𝐸(𝛼) =
1

ℎ
∑ 𝑟(𝑖)

2ℎ
𝑖=1 ,                                                (12) 

where ℎ is integer part of 𝛼𝑛, 𝛼 ∊ [0.5,1)  is a fixed constant (ensuring 𝑛 2 ≤ ℎ ≤ 𝑛⁄ ), and 

squared prediction errors are arranged as 𝑟(1)
2 ≤ ⋯ ≤ 𝑟(𝑛)

2 . We propose now a novel robust 

prediction error measure denoted as the weighted mean square error (WMSE) and defined as 

                                                        𝑊𝑀𝑆𝐸 = ∑ 𝑤𝑖𝑟(𝑖)
2𝑛

𝑖=1                                                    (13) 

with some non-increasing weights (2). This represents an analogue of the LWS estimator and 

the trimmed linear weights (5) may be a reasonably robust choice also here. 

 

3 Description of the study 

We perform a metalearning study using the 20 datasets previously analyzed by Peštová & 

Kalina (2018). We use R software package together with libraries rrcov, rda and e1071. We 

use three different measures of prediction of Section 3, namely MSE, TMSE(3/4) and 

WMSE with trimmed linear weights. The primary learning is computed twice, namely over 

raw data (without a dimensionality reduction) and after a variable selection. The subsequently 

performed metalearning procedure is computed again twice, namely over raw data and also 

after a variable selection. 

      We use the following estimators of parameters in model (1): 
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• Least squares, 

• Huber’s M-estimator (Jurečková et al., 2019), 

• LTS with h equal to ⌊3𝑛/4⌋, where ⌊𝑥⌋ denotes the integer part of 𝑥 ∊ ℝ, 

• LWS with trimmed linear weights (5). 

We use the following classifiers for the metalearning task: 

• Linear discriminant analysis (LDA), 

• Regularized discriminant analysis (RDA) of Friedman (1989), 

• Shrunken centroid regularized discriminant analysis (SCRDA) of Guo et al. (2012), 

• A linear SVM (support vector machine) classifier.  

A regularized version of LDA may namely improve robustness compared to the LDA, 

because it is known that a suitable regularization improves (local) robustness properties. 

  

3.1 List of features 

We use the following set of 9 features for each dataset.  

(1) The number of observations n, 

(2) The number of regressors p (excluding the intercept), 

(3) Normality of residuals, evaluated as the p-value of the Shapiro-Wilk test, 

(4) Skewness, 

(5) Kurtosis, 

(6) Heteroscedasticity of residuals evaluated as the p-value of the White’s test, 

(7) Condition number of the matrix (𝑋𝑇𝑋)−1, 

(8) Percentage of outliers, as estimated by a novel procedure of Section 4.2 below, 

(9) Weighted coefficient of determination  𝑅𝑊
2  proposed in Section 2.2. 

 

3.2 Variable selection 

As described above, the metalearning computations are performed on raw data and also on 

data after a supervised variable selection, which will be presented in this section. We perform 

the Minimum Redundancy Maximum Relevance (MRMR) variable selection studied by Ding 

& Peng (2005). This popular approach requires to measure relevance of a set of variables for 

the classification task, i.e. to evaluate the contribution of a given variable to the classification 

task. Also it is necessary to use a measure of redundancy of a set of variables. While variable 

selection is often performed by means of hypothesis testing in practice, most often by t-tests, 

we must remark that such approach ignores the multivariate structure of data as well as the 
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problem of repeated testing, if each of the tests is (of course incorrectly) performed on the 5% 

significance level. 

     The procedure selects gradually one variable after another and these form a set denoted 

as S. Let the index corresponding to the group label be denoted as H. First, we need to 

evaluate for each variable (say Z) its relevance for the classification task, which will be 

evaluated as the F-statistic denoted as 𝐹(𝑍, 𝐻). The very first selected variable maximizes this 

relevance among all variables. Further, we need to evaluate for each variable Z, which is not 

present in S yet, the value of 

                                                  
1

|𝑆|
∑ 𝐹(𝑋𝑖, 𝐻) − 𝜆 ∑ |𝑟(𝑋𝑖, 𝑋𝑗)|𝑖,𝑗∊𝑆∗𝑖∊𝑆∗ ,                                       (14) 

where 𝑆∗ is the set S after adding the variable Z and r is the (Pearson) correlation coefficient. 

The parameter λ∊ (0,1) is found by leave-one-out cross validation. Such variable is selected 

to the set S, which maximizes (5). The selection of variables according to (5) is repeated and 

new variables are added to the set of selected variables until a given stopping rule is fulfilled. 

We require the selected variables to explain at least 90 % of the total variability of the data. 

 

4 Results of the metalearning study 

The results of primary learning heavily depend on the choice of the prediction error measure, 

as indicated in Table 1. The least squares estimator turns out to be the best most often, only if 

the standard MSE is used. Robust estimators are more suitable if a robust prediction error is 

considered; the LTS estimator is the most successful method for TMSE; and finally the LWS 

estimator is the most succesful method for WMSE. The results of the subsequently performed 

metalearning are presented in Table 2. Our comparison reveals the robust metalearning to be 

more sucessful compared to a standard approach. Thus, the new results are much improved 

compared to those of Peštová & Kalina (2018).  

       

Conclusion 

Metalearning has the ability to recommend a suitable algorithm for a given dataset, based on 

prior knowledge learned over training datasets. It is however known to suffer from 

vulnerability to outliers. At the same time, vulnerability to outliers is highly intertwined with 

the instability of metalearning; the relationship between robustness and stability was 

discussed by Breiman (2001) or Shawe-Taylor & Cristianini (2004).  
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       A theoretical novelty of this paper is a proposal of several tools accompanying the LWS 

estimator. They include a robust coefficient of determination, a robust version of MSE, and 

a procedure for outlier detection. Each of these new implicitly weighted methods could be 

used also independently (i.e. not necessarily within metalearning).  The computation remains 

intensive however also if this reliable algorithm is used. 

       An experimental study presented in this paper has a unique aim to perform the 

metalearning in a robustified way. The main factors contributing to the improvements are 

using a robust prediction error measure and performing a variable selection of the data. The 

MRMR variable selection is helpful also if some features do not suffer from the presence of 

redundant variables (which is the case e.g. of the coefficient of determination). In addition, it 

seems as an adequate aim for future research to investigate metalearning (exploiting again 

dimensionality reduction) for available real high-dimensional data with the number of 

variables in the order of thousands.  
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Tab. 1: Results of primary learning evaluated as the percentage of datasets, for which 

the given estimator is the best. The primary learning was performed using three 

different measures of prediction error. 

 MSE TMSE(3 4⁄ ) WMSE 

 Primary learning performed over raw data 

Least squares 0.35 0.10 0.10 

M-estimator 0.10 0.05 0.05 

LTS 0.35 0.70 0.30 

LWS 0.20 0.15 0.55 

 Primary learning performed after variable selection 

Least squares 0.15 0.10 0.10 

M-estimator 0.20 0.00 0.00 

LTS 0.40 0.80 0.25 

LWS 0.25 0.10 0.65 

Source: own computation 
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Tab. 2: Results of the metalearning study evaluated as the ratio of correctly classified 

cases in a leave-one-out cross validation study. 

 MSE TMSE (3/4) WMSE 

 Metalearning performed on raw data 

LDA 0.35 0.45 0.45 

RDA 0.35 0.45 0.45 

SCRDA 0.40 0.50 0.50 

SVM 0.40 0.50 0.50 

 Metalearning performed after a prior variable selection 

LDA 0.65 0.70 0.70 

RDA 0.65 0.75 0.70 

SCRDA 0.70 0.80 0.80 

SVM 0.75 0.75 0.80 

Source: own computation 
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