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Abstract 

Clustering techniques can be used to organize into groups based on similarities among the 

individual data. In other words, clustering techniques are tools for discovering the previously 

hidden structure in a set, where the objects from one cluster are as similar as possible and objects 

from different clusters are dissimilar as possible. There are many different coefficients for 

estimating the optimal number of clusters. Each of these coefficients has its strengths and 

weaknesses. In this research, several coefficients for estimating the optimal number of clusters 

(for fuzzy clustering techniques) are examined. Also, their strengths and weaknesses are 

studied. And finally, the new coefficient for evaluating the fuzzy C-means clustering results is 

presented. The proposed coefficient is compared with a number of popular validation indices 

on nine datasets. The experimental results show that the effectiveness and reliability of the 

proposal is superior to other indices. The main advantage of this new coefficient is that, it works 

correct on data sets with large and small number of clusters. This characteristic of the new 

coefficient is very significant, as this algorithm require the number of clusters as an input, and 

the analysis result can vary greatly depending on the value chosen for this variable.  
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Introduction  

Cluster analysis is one of the methods of multivariate statistics, which is used to detect hidden 

data structure, found the groups with the most similar groups. That’s why cluster analysis is very 

useful in different areas as psychology, sociology, medicine, marketing, and etc. The 

precondition of cluster analysis is the following: objects in data sets are more or less different 

from each other, hence there are several groups (clusters) of those objects, which can be defined 

with cluster analysis. The aim of the cluster analysis is to partition a given set of data or objects 

into clusters (subsets, groups, classes). This partition should have the following optimal ties: 

homogeneity within the clusters, i.e. data that belong to the same cluster should be as similar as 

possible, and Heterogeneity between clusters, i.e. data that belong to different clusters should 
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be as different as possible. Based on this reasoning it is clear that cluster analyses explore 

similarities between objects in input data matrix with the help of similarity measures. It is also 

important to realize what type of clusters we want whether we want to create a certain number 

of clusters or a hierarchy of clusters.  

Most of well-known validity indices (Dunn index, Xie-Beni index, Modified Dunn 

index) have drawbacks pertaining to the evaluation of clustering results in a large number of 

clusters, and with increasing variability of data. There are many cluster validity indices offers 

conclusion that there is not generally the best validity index, and existing cluster validity indices 

are not very efficient in estimation of clusters of different sizes and densities. (Žalik and Žalik, 

2011) They do not solve the problem of identifying the correct number of clusters. (Wang, 

Zhang, 2007)  The problem of identifying the correct number of clusters on data set as with the 

small, as with the large number of clusters be discussed and solved in current research. 

Therefore, there are two objectives. First of all to find out advantages and disadvantages of 

existing the most successful coefficients (Dunn index, Xie-Beni index, Modified Dunn index). 

And the second one is to propose new validity index, which has no those disadvantages. 

In this paper, we present a new coefficient for validating fuzzy C-means clustering 

results, which works correctly on both data sets with a small number of clusters and on data 

sets with a large number of clusters (more than 5), assuming that the input data have a normal 

distribution. This new index combines into one index two components using the harmonic 

mean. One of the components is based on fuzzy clustering theory and the other one is based on 

hard clustering theory. The theory of fuzzy clustering is based on the assumption that each 

object belongs to each cluster with a membership degree uij. The hard clustering theory is based 

on the assumption that each object belongs to one cluster, the average distance from the cluster 

centre and objects of this cluster should be minimal.  

 

1 Validation approaches 

The problem for finding an optimal number of clusters k* is usually called cluster validity 

problem. In order to solve the cluster validity problem, validity indices must enclose, take into 

account, some specific are as which enable to solve this problem successfully. Those areas are: 

compactness, separation, noise and overlap. The compactness is a measure, which indicates the 

degree of similarity of data objects in a cluster, is calculated from membership values of data 

objects that are strongly enough associated to one cluster. (Žalik, 2010)  Separation – a measure 

of how similar that object is to objects in its own cluster compared to objects in other clusters, 
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shows the isolation of clusters. The basic measure of separation is the deviation between two 

fuzzy cluster centres. This two values are the basic values of validity, as for hard, as for fuzzy 

clustering. The small local value of compactness shows, that each cluster is compact and the 

great local value of separation shows, that clusters are good separated.  

Noise – noisy objects are objects that do not belong to any clusters of data set. According 

by Saad, if the data set contains some noise objects, then we can see that the validity indices 

take the noisy object in a compact and separated class from the rest of the classes. Thus, the 

noise aspect is crucial in the classification of data. (Saad, 2012) Overlap – is a measure, that 

indicating the degree of overlapping two clusters, the measure with which two clusters overlap 

and have similar future vectors. In this work are presented the classification of indices by Wang. 

(Wang, Zhang, 2007).  Start with validity indices involving only the membership values, and 

the first index is Dunn’s index. 

1.1 Dunn’s index or Partition coefficient (PC) 

Bezdek tried to define a performance measure based on minimizing the overall content of pair 

wise fuzzy intersection in the partition matrix. Those validity index is partition coefficient (PC). 

The index is defined as: 

 2

1 1

1 k n

ij

j i

PC u
n = =

=    (1) 

The PC index shows the average relative amount of membership sharing done between 

pairs of fuzzy subsets in U, by combining into a single number, the average contents of pairs of 

fuzzy algebraic products. (Wang, Zhang, 2007). In general, we find an optimal cluster number 

k* by solving 
2  - 1

max
k n

PC
 

 to produce the best clustering performance for the data set X. 

(Dunn, 1974) 

1.2 Modified Dunn’s index (PCmod) 

The next validity index is proposed by Dave as a modification of the previous one: 

 
mod

( ) 1 (1 ( ))
1
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PC k PC k

k
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−
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This index can take values 0,1, where k* is the optimal number of clusters. This cluster 

number k* is defined by solving of (Dave, Bhaswan, 1992): 
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When the variability in clusters is small, this modified Dunn’s coefficient PCmod usually 

determined the number of clusters correctly. (Rezankova, Dusek, 2012) When the cluster 

variability is greater, the normalized Dunn’s coefficient usually achieved its highest value for 

the highest possible number of clusters. (Rezankova, Dusek, 2012) 

1.3 Xie-Beni index (XB) 

The second group of the validity indices is indices involving membership values and the data 

set. The most successful coefficient from this group is Xie Beni index. Those index is proposed 

by Xie and Beni  with q = 2  (Xie, Beni, 1991) and modified by Pal and Bezdek (Bezdek, Pal. 

1995) is defined as: 
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Like we can observe, this index includes two components: compactness in the numerator 

and separation, which is represented in denominator. Small value of compactness is evidence 

of a good partition, and high value of separation is evidence of a good partition. The optimal 

number of clusters k* can be find by solving 
2 1

min
k n

XB
  −

 to produce the best clustering 

performance for the data set X. Unfortunately, this index has tendency to monotonically 

decrease with increasing number of clusters.  

1.4 E index (E) 

The theory of fuzzy clustering is based on the assumption the each object belongs to each cluster 

with a membership degree uij. The hard clustering theory is based on the assumption that each 

object belongs to one cluster, the average distance from the cluster centre and objects of this 

cluster should be minimal. 

Joining two elements based on different approaches into one index helps us to reduce 

disadvantages of both. The first element here is Dunn’s coefficient. We can distinguish two 

extreme situations: completely fuzzy clustering: all uij = 1/k  PC =1/k hard clustering: for one 

uij : uij = 1 and for all others: uij = 0  PC =1. The second element is based on the hard clustering 

theory: to sum the ratio of the distance minimum in case n clusters to the distance minimum in 

case 1 cluster (k). Traditional (hard) clustering considers the geometrical optionality of the data 
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structure. (Žalik, 2010) We combine in the aggregate function two parts: one of them is Dunn’s 

coefficient (the maximum value for the best clustering), and the second one should also strive 

to maximum, that’s why we introduce the complement into one N (which achieves the 

maximum value for the best clustering). And now we have to solve the optimization problem. 

It can be represented in the following way: 
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This function tends to its maximum for the best clustering because the inverse values of 

those two parts receive its minimum for the best clustering. An optimization problem consists 

of maximazing a real function by systematically choosing input values from within an allowed 

set and computing the value of the function. 
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The optimal number of clusters k* for the data set X can be found by solving
2 1

max
k n

E
  −

. 

2 Case study 

To find validity indices, an extensive comparison of some of the abovementioned indices are 

conducted with the possible fuzzy C-means algorithm on an artificial number and a number of 

well-known data sets. In all experiments the distance function used is Euclidian distance. 

Choosing the best range in the number of clusters is quite a difficult problem. In this work, for 

all mentioned data sets, Bezdek’s suggestion is adopted: 2
min

=k  and nk =
max

. (Bezdek, 1998) 

  For every data set 4 validity indices are calculated: Dunn’s index, modified Dunn’s 

index, the Xie-Beni index and finally the E coefficient. Afterwards, the success of each index 

is calculated. The main objective of this section is to compare the performance of the 

aforementioned indices in determining the optimal (actual) number of clusters. The real data 

sets are from the open internet-database UCI Machine Learning Repository.  

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Argument_of_a_function
http://en.wikipedia.org/wiki/Value_(mathematics)
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All results are shown in Table 1. Summing up, we can determine in which of the 

abovementioned cases the indices worked incorrectly, in other words, to find out what affected 

it. As Saad stated: The disadvantages of the coefficients PC are the lack of direct connection to 

the geometrical structure of data, and its tendency to decrease with the number k. (Saad, 2012) 

When the variability in clusters is small, this normalized Dunn’s coefficient usually determined 

the number of clusters correctly. (Rezankova, Dusek, 2012)  When the cluster variability is 

greater, the normalized Dunn’s coefficient usually achieved its highest value for the highest 

possible number of clusters. (Rezankova, Dusek, 2012) The Xie-Beni index is focused on two 

aspects of optionality: compactness and separation. As we know, compactness is a measure of 

the proximity of objects' vectors that share the same clusters as their centre. A small value of 

compactness indicates the of each cluster. Separation is a distance between two different 

clusters; hence separation indicates how two clusters are distinct and isolated from one another. 

A high value of separation shows that the clusters are well separated. 

Tab. 1: Validity Indices  

Data Sets 
The Results of Optimal Number of Clusters 

Optimal Number PC PCmod XB E 

Breast Tissue 6 2 2 2 6 

Banknote Authentication 2 2 2 2 2 

Climate Model Simulation Crashes 2 2 2 2 2 

Fertility 2 2 2 2 2 

Ionosphere 2 2 2 2 2 

Parkinson Train Data 2 2 2 2 2 

User Knowledge 4 2 3 4 4 

Vowel 11 3 2 8 11 

Wine 3 2 2 2 2 

Sucessfulness,% - 56 56 67 89 

Source: author 

 

Conclusion 

The validation of clustering structures is the most difficult and frustrating part of cluster 

analysis. That’s why the issue of the definition of the indexes, which would be good for data 

with large variability and a large number of clusters, has not yet been resolved. As shown by 

the results of the approach, which we suggest, this modification can increase the efficiency of 

the correct determination of the number of clusters. 

By analysing each data set, we can observe the different behaviour of each index: PC, 

PCmod, XB and E. In the evaluation of fuzzy clustering results, it is necessary in the case of 
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quantitative variables to compute multiple indices because there is no universal index to 

determine the correct number of clusters. In some cases, the local extreme exists. However, it 

is not very dependable for the determining the correct number of clusters, and does not show 

the correct number of clusters (as in many cases with PC index). Summary of evaluating of 

fuzzy clustering results are shown in Table 2. 

 

Tab. 2: Summary of Evaluating Fuzzy Clustering Results 

Characteristic Affect Does not Affect 

The number of clusters  Does not affect the results (Bezdek, 1995) 

The number of variable  Does not affect the results (Bezdek, 1998) 

The Distance Measure  Does not affect the results (Bezdek, 1998; 

Oliviera, 2007) 
Chosen algorithm Affect the results (Oliviera, 

2007) 

 

Overlappinga Affect the results 

(Krishnapuram, Joshi, 

Nasraoui, and Yi,1993) 

 

Source: author 

a)Krishnapuram, Joshi, Nasraoui, and Yi [16] recommended a value of overlapping(q) between 1 and 1, 5. 

In most cases, the proposed index E works correctly: both for real and generated data 

sets (88% successfulness on real data sets and the same success rate on generated data sets), the 

worst results are shown by the PC index (63% successfulness on real data sets and a 32% 

success rate on generated data sets). Even better is the PCmod index with success rates of 50% 

and 40%, respectively. The XB index showed better results than the PC and PCmod indices. Its 

success rates are 75% and 84%, which is worse than the index results of E. 

A significant merit in the evaluation of fuzzy clustering results is index E, which even 

determines the correct number of clusters in cases with large cluster overlap. 

To sum up, based on above mentioned analysis, it can be stated that the newly proposed 

E index has significant merit in the problem of evaluating fuzzy clustering results. Using the E 

coefficient brings more reliable results than using the previously proposed indices (PC, PCmod, 

and XB). The XB index is less successful because the best clustering results are achieved with 

an overlapping value of 1.5 (Krishnapuram,1993) and XB index has the best results with an 

overlapping value of 2 (Wang, Zhang, 2007). If the value of overlapping fundamentally affects 

the result of certain data sets, in that case XB index fails.  

Testing many well-known previously formulated and proposed index on well-known 

data sets showed the superior reliability and effectiveness of the proposed index in comparison 
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to other indices especially when evaluating partitions with clusters that widely differ in size or 

overlapping.  
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