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NUMERICAL ALGORITHMS FOR STOCHASTIC 
PROCESSES 

Josef Janák   

 

Abstract 

In probability theory, a stochastic process is a mathematical object usually defined as a family 

of random variables. Based on their properties (and their mutual connections), stochastic 

processes can be divided into various categories, which include random walks, Markov 

processes, Gaussian processes, Lévy processes, random fields and branching processes. 

They are widely used as mathematical models of some systems that appear to vary in a 

random manner. They are used for modelling in many disciplines such as physics 

(Papanicolaou, 1995), chemistry (Kampen, 2007), biology (Ricciardi, 1977), climatology 

(Lions, Temam & Wang, 1992), social sciences (Cobb, 1981) as well as finance (Mayer-

Brandis & Proske, 2004) and option pricing (Schoutens, 2003). 

The most important example of a stochastic process is the Brownian motion named 

after Robert Brown who studied the movement of a microscopic particle in water almost two 

centuries ago. His work was followed by many mathematicians (such as Norbert Wiener or 

Paul Lévy), who provided mathematical background which later became the foundation of the 

stochastic analysis, but his work was also followed by many physicists (such as Albert 

Einstein, Marian Smulchowski or Jean Baptiste Perrin) who studied diffusion of particles 

suspended in fluid. 
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Introduction 
The aim of this paper is to introduce some of the most important stochastic processes with 

focus on the practical implementation of their simulation. As the programming language for 

our algorithms, we have chosen the program R. It is free software that is used mostly by the 

statisticians and we believe that the implementation is intuitive and understandable. For more 

detail, see the brief R manual “An Introduction to R” that comes with every installed version 

of R. 
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The main source for this work is the book (Iacus, 2010). There can be found many 

advanced methods of simulations not only for the basic stochastic processes, but also for more 

complicated (and rather general) stochastic partial differential equations. The other half of the 

book is dedicated to the parametric estimation, making it a useful guide to the practical point 

of view of stochastic processes. 

We have used the book (Iacus, 2010) in a way that we summarized the basic notions 

on the chosen stochastic processes and we improved some of the stated programming codes 

by removing some errors and by generalization of some of the codes. Hence we created even 

more concise paper for beginners, learners and students of this topic. 

The article is organised as follows. In Section 1, we introduce the standard Brownian 

motion and present two possible methods of its simulation. The first one comes directly from 

the basic properties of Brownian motion, the second one is due to Donsker’s theorem (see, 

e.g., (Billingsley, 2013)). We also discuss the space-shifted and time-shifted Brownian motion 

that is generalized even more in Section 2, where we introduce the Brownian bridge. 

Section 3 is dedicated to the geometric Brownian motion. We provide motivation 

which leads to the definition of the process in the form of stochastic differential equation (1) 

as well as its solution (4). Two methods of simulation are presented and the influence of the 

parameters of rate and volatility is discussed. We conclude with Section 4, where we define 

and simulate trajectories of the Ornstein-Uhlenbeck process. 

 

1 Brownian motion 
Brownian motion (also Wiener process) is the fundamental process in the theory of stochastic 

processes. It is a key process in terms of which more complicated stochastic processes can be 

described. The most common definition of the Brownian motion ܹ = ,(ݐ)ܹ} ݐ ≥ 0}, is the 

characterization by the following properties: 

 ܹ(0) = 0 with probability 1, 

 ܹ has independent increments, i.e., for every ݐ > . . . > ଵݐ ≥ 0, the random variables 

௧ܹ − ௧ܹషభ , … , ௧ܹమ − ௧ܹభare independent, 

 ܹ has Gaussian increments, i.e., for every ݐ > ݏ ≥ 0, the increment ௧ܹ − ௦ܹ is 

normally distributed with mean 0 and variance ݐ − ௧ܹ ,ݏ − ௦ܹ ~ ܰ(0, ݐ −  ,(ݏ

 ܹ has continuous path with probability 1. 
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The first method of simulation of a trajectory of the Brownian motion is precisely 

according the above definition. Given a fixed time increment ∆ݐ > 0 and the time interval 

[0, ܶ], it holds true that 

(ݐ∆)ܹ = (ݐ∆)ܹ − ܹ(0) ~ ܰ(0, ݐ∆√ ~ (ݐ∆  ∙  ܰ(0,1), 

and (since the increments are independent), it is also true for any other “following” increment, 

i.e., 

ݐ)ܹ + (ݐ∆ − ,0)ܰ ~ (ݐ)ܹ ݐ∆√ ~ (ݐ∆  ∙  ܰ(0,1). 

Thus we divide the interval [0, ܶ] equidistantly 0 = ଵݐ < ⋯ < ேݐ = ܶ with ݐାଵ −

ݐ = ݅ set ,ݐ∆ = 1, ܹ(0) = (ଵݐ)ܹ = 0 and iterate the following algorithm: 

1. Generate a random number ܺ from the standard Gaussian distribution. 

2. ݅ ∶= ݅ + 1. 

(ݐ)ܹ .3 ∶= (ିଵݐ)ܹ +  ܺ ∙  .ݐ∆√

4. If ݅ < ܰ, go to step 1. 

5. Between any two time points ݐ and ݐାଵ interpolate the trajectory linearly. 

This algorithm can be implemented in the R language as follows. 
> set.seed(222) 

> N <- 100 # number of time points 

> T <- 1 # length of the interval [0,T] 

> Delta <- T/N # time increment 

> W <- numeric(N+1) # initialization of the vector W 

> t <- seq(0, T, length = N+1) # sequence of time points 

> for(i in 2:(N+1)) 

+ W[i] <- W[i-1] + rnorm(1) * sqrt(Delta) 

> plot(t, W, type = "l", main = "Brownian motion", ylim = c(-1,1)) 

While this code is clear and straightforward, the iteration in the for cycle is not 

needed. If we use the function cumsum for the cumulative summation, the whole trajectory 

can be simulated in just one line of R code: 
> W <- c(0, cumsum(sqrt(Delta) * rnorm(N))) 

These two implementations are equivalent (they even provide the same trajectory), 

however due to the nature of R language, the second one is much faster. The simulated path of 

the Brownian motion can be found in Figure 1. 
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Fig. 1: A simulated trajectory of the Brownian motion 

 
Source: Author’s construction 

Brownian motion can be also characterized as the limit of random walks by Donsker’s 

theorem (see (Billingsley, 2013)). It is a functional extension of the central limit theorem: 

Let ܺଵ, ܺଶ, ܺଷ, … be a sequence of independent, identically distributed random 

variables with mean 0 and variance 1, let ܵ = ܺଵ + … +  ܺ be a partial sum of these 

variables. Then, as ݊ → ∞, 

ܲ ൬ [ܵ௧]

√݊
< ൰ݔ → (ݐ)ܹ)ܲ <  ,(ݔ

where [ݔ] is the integer part of the real number ݔ and ݐ ≥ 0. 

That leads to another way of simulating a trajectory of the Brownian motion: By 

generating independent random variables ܺଵ, … , ܺ, which take values 1 and -1 with 

probability ଵ
ଶ
, and by their summing and rescaling, we end up with the trajectory of Brownian 

motion, as is described in the following code: 
> set.seed(222) 

> n <- 10 # number of used variables # also n <- 100 # n <- 1000 

> T <- 1 

> t <- seq(0, T, length = 100) 
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> S <- cumsum(2*(runif(n) > 0.5) - 1) 

> W <- sapply(t, function(x) ifelse(n*x > 0, S[n*x], 0)) 

> W <- as.numeric(W)/sqrt(n) 

> plot(t, W, type = "l", main = "Brownian motion by random walks", 

  ylim = c(-1, 1)) 

In the above implementation, the random variables ܺ, ݅ = 1, … , ݊ were actually 

generated from the uniform distribution and then they were transformed into ±1 variables. In 

Figure 2, we may observe, how many random variables we need to obtain plausible trajectory 

of Brownian motion. 

 

Fig. 2: Trajectory of the Brownian motion as the limit of random walks – bold line  =

, dashed line  = , dotted line  =  

 
Source: Author’s construction 

If we are concerning which method to choose, the first method should be used if we 

are interested in the position of Brownian motion at the fixed time point. (This is quite 

common in finance in the evaluation of the payoff with a fixed exercise time.) The method is 

fast and with some small ∆ݐ accurate. On the other hand, if we are interested in the whole 

trajectory of Brownian motion (for example in the evaluation of the Asian option, but also for 
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the description of the whole dynamic of the process), the second method (with some large 

number of random variables ݊, e.g., ݊ ≥ 1000) could be used. 

There are indeed many generalizations of Brownian motion, from which we mention 

the shifted Brownian motion. Given a Brownian motion ܹ(ݐ) and a point ݔ ∈ ܴ, the process 

ܹ,௫(ݐ) = ݔ + ,(ݐ)ܹ ݐ ≥ 0, 

is a Brownian motion starting from the point ݔ instead of 0 at the time 0. 

Furthermore, we may consider not only the shift in the space variable, but also the 

shift in the time variable. If we want Brownian motion to start at some fixed time ݐ instead of 

the time 0, we may define 

௧ܹబ,௫(ݐ) = ݔ + (ݐ)ܹ − ,(ݐ)ܹ ݐ ≥  .ݐ

This is the process ௧ܹబ,௫ = ,(ݐ)ܹ} ݐ ≤ (ݐ)ܹ|ݐ =  i.e., it is the standard ,{ݔ

Brownian motion conditioned in the way that ܹ(ݐ) =  Since the increments of Brownian .ݔ

motion are independent on its past (which is called the Markov property, see (Stroock, 2013)), 

the distribution of ௧ܹబ,௫(ݐ) and ݔ + ݐ)ܹ −  ) are equal. Therefore the simulation of thisݐ

process starts with the simulation of Brownian motion, its shifting in the space (to the point ݔ) 

and then its translating in the time (so it starts at time ݐ). (See the following Section for 

similar construction.) 

 

2 Brownian bridge 
Brownian bridge is an important stochastic process not only in the theory of stochastic 

processes, but also in some statistical applications. It is a Brownian motion starting at ݔ at 

time ݐ and terminating at ݕ at time ܶ, ܶ >  . One of the possible definitions can be asݐ

follows 

௧ܹబ,௫
்,௬(ݐ) = ݔ + ݐ)ܹ − (ݐ −

ݐ − ݐ

ܶ − ݐ
∙ (ܹ(ܶ − (ݐ − ݕ + ,(ݔ ܶ ≥ ݐ ≥  .ݐ

This is in fact the process {ܹ(ݐ), ݐ ≤ ݐ ≤ (ݐ)ܹ|ܶ = ,ݔ ܹ(ܶ) =  i.e., it is the ,{ݕ

standard Brownian motion conditioned in the way that ܹ(ݐ) = (ܶ)ܹ and ݔ =  .ݕ

Brownian bridge can be easily simulated by scaling of the trajectory of Brownian 

motion according the above formula. 
> set.seed(222) 

> N <- 100 # number of time points 

> t0 <- 0 # starting time 

> T <- 1 # terminal time 

> Delta <- (T - t0)/N # time increment 
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> W <- numeric(N+1) # initialization of the vector W 

> t <- seq(t0, T, length = N+1) # sequence of time points 

> W <- c(0, cumsum(sqrt(Delta) * rnorm(N))) # Brownian motion 

> x <- 1 # initial value 

> y <- -1 # terminal value 

> BB <- x + W - (t - t0)/(T - t0) * (W[N+1] - y + x) 

> plot(t, BB, type = "l", main = "Brownian bridge") 

Figure 3 shows simulated trajectory of the Brownian bridge starting from ݔ = 1 at 

time 0 and terminating at ݕ = −1 at time ܶ = 1. 

 

Fig. 3: A simulated trajectory of the Brownian bridge 

 
Source: Author’s construction 

 

3 Geometric Brownian motion 
Geometric Brownian motion is used to model stock prices in the Black–Scholes model and it 

is the most widely used model of stock price behaviour (see (Black & Scholes, 1973)). The 

process is continuous in time and it is the solution of the following so-called stochastic 

differential equation 
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(ݐ)ܵ݀ = ݐ݀(ݐ)ܵߤ + ,(ݐ)ܹ݀(ݐ)ܵߪ  ܵ(0) = ,ݔ ݐ ≥ 0.               (1) 

The motivation to the equation (1) is that the variation of the asset ∆ܵ = ݐ)ܵ + (ݐ∆ −

,ݐ] in a small interval (ݐ)ܵ ݐ +  has the following dynamics (ݐ∆
∆ܵ
ܵ

= ݐ∆ߤ +  (2)               .ܹ∆ߪ 

It means that the returns of the asset consist of some deterministic contribution, which 

is dependent on the length of the interval ∆ݐ (hence the term ݐ∆ߤ) and some stochastic 

contribution (randomness, noise, shocks, ...), which may behave independently and also 

complying Gaussian distribution (hence the term ߪ∆ܹ). Now if we multiply the equation (2) 

by ܵ and let ∆ݐ → 0, we arrive at (1). 

However, to give a satisfactory meaning to the equation (1), we also have to introduce 

its integral form 

(ݐ)ܵ = ܵ(0) + ߤ  න ݑ݀(ݑ)ܵ
௧


+ ߪ  න (ݑ)ܹ݀(ݑ)ܵ

௧


, ݐ ≥ 0.               (3) 

Since the variation of Brownian motion is not finite and its derivative nowhere exists 

(see (Karatzas & Shreve, 1998)), there is a need to build a proper stochastic integration with 

respect to the Brownian motion. It can be done (see also (Karatzas & Shreve, 1998)) and the 

third term in (3) will obtain a rigorous meaning. The coefficient ߤ > 0 is interpreted as the 

interest rate and the coefficient ߪ > 0 is interpreted as volatility. For more properties of the 

geometric Brownian motion, see, e.g., (Ross, 2014). 

The first way of simulating a trajectory of the geometric Brownian motion comes from 

the equation (2). We divide the interval [0, ܶ] equidistantly, and (starting from some positive 

initial value ܵ(0) = ݔ > 0) we generate the increments of the process {ܵ(ݐ), ݐ ≥ 0} according 

the dynamics (2). This method is called the Euler’s method (see (Iacus, 2010)). 
set.seed(222) 

N <- 100 # number of time points 

T <- 1 # length of the interval [0,T] 

x <- 5 # initial value 

mu <- 1 # value of the parameter mu - rate 

sigma <- 1 # value of the parameter sigma - volatility 

Delta <- T/N # time increment 

S <- numeric(N+1) # initialization of the vector S 

S[1] <- x 

W <- rnorm(N) # generation of increments of Brownian motion 

for(i in 1:N) 

S[i+1] <- S[i] + mu*S[i]*Delta + sigma*S[i]*sqrt(Delta)*W[i] 
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plot(t, S, type = "l", main = "Geometric Brownian motion") 

Figure 4 depicts three simulated trajectories of the Geometric Brownian motion. In all 

three cases, the same increments of Brownian motion were used, so we may compare the 

influence of the parameter ߤ (rate) on the resulting trajectory. 

 

Fig. 4: A simulated trajectory of the Geometric Brownian motion – bold line ࣆ = , 

dashed line ࣆ = . , dotted line ࣆ = .  

 
Source: Author’s construction 

There is also another way, how to simulate a path of the geometric Brownian motion. 

The stochastic differential equation (1) has a unique solution given by the closed formula 

(ݐ)ܵ = ݔ exp ቊቆߤ −
ଶߪ

2
ቇ ݐ + ቋ(ݐ)ܹ ߪ  , ݐ ≥ 0.               (4) 

The fact that the stochastic process given by (4) has the required stochastic differential 

(1) can be verified by the Ito’s formula (see, e.g. (Iacus, 2010)). With that in mind, the 

simulation of the trajectory is easy – it is just a function of the standard Brownian motion. See 

the following implementation and Figure 5. 
> set.seed(222) 

> N <- 100 # number of time points 

> T <- 1 # length of the interval [0,T] 
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> x <- 5 # initial value 

> mu <- 1 # value of the parameter mu - rate 

> sigma <- 1 # value of the parameter sigma - volatility 

> Delta <- T/N # time increment 

> W <- numeric(N+1) # initialization of vector W 

> t <- seq(0, T, length = N+1) # sequence of time points 

> W <- c(0, cumsum(sqrt(Delta) * rnorm(N))) # Brownian motion 

> S <- x*exp((mu - sigma^2/2)*t + sigma*W) 

> plot(t, S, type = "l", main = "Geometric Brownian motion") 

 
Fig. 5: A simulated trajectory of the Geometric Brownian motion by direct formula – 

bold line ࣌ = , dashed line ࣌ = , dotted line ࣌ = .  

 
Source: Author’s construction 

The generated trajectory with ߤ = 1 and ߪ = 1 (in bold) is actually the same as the 

trajectory with the same parameters in Figure 4. The two methods actually coincide. 

Therefore we focused on different values of volatility ߪ. With larger value of ߪ, the process 

,(ݐ)ܵ} ݐ ≥ 0} is further its mean value (which is the function ݁ݔఓ௧ depicted in a smooth 

dashed line). If we consider the smaller values of ߪ, the process follows its mean value much 

closer. 
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4 Ornstein-Uhlenbeck process 
Another stochastic process with applications both in financial mathematics and the physical 

sciences is the Ornstein-Uhlenbeck process. The process is also continuous in time and it is 

the solution of the following stochastic differential equation 

(ݐ)ܺ݀ = ൫ߠଵ − ݐ݀ ൯(ݐ)ଶܺߠ + ,(ݐ)ଷܹ݀ߠ  ܺ(0) = ,ݔ ݐ ≥ 0,               (5) 

where ݔ ∈ ,ଵߠ ,ܴ ଶߠ ∈ ܴ and ߠଷ > 0. 

The model with ߠଵ = 0 was introduced by Ornstein and Uhlenbeck (see (Uhlenbeck & 

Ornstein, 1930)) and with the reparametrization 

(ݐ)ܺ݀ = ߤ൫ߠ − ݐ݀ ൯(ݐ)ܺ + ,(ݐ)ܹ݀ ߪ ܺ(0) = ,ݔ ݐ ≥ 0, 

is used in financial mathematics as Vasicek model (Vasicek, 1977). (Here ߤ is interpreted as 

the long-run equilibrium of the process, ߠ as the speed of the reversion and ߪ as the 

volatility.) 

The simulation of the process follows the definition (5) and the Euler’s method is 

implemented as follows. 
> set.seed(222) 

> N <- 100 # number of time points 

> T <- 1 # length of the interval [0,T] 

> x <- 5 # initial value # also x <- 2 # x <- 1 

> theta <- c(10, 5, 3.5) # values of the parameters 

> Delta <- T/N # time increment 

> X <- numeric(N+1) # initialization of vector X 

> X[1] <- x 

> t <- seq(0, T, length = N+1) # sequence of time points 

> W <- rnorm(N) # generating of increments of Brownian motion 

> for(i in 1:N) 

+ X[i+1] <- X[i] + (theta[1] - theta[2]*X[i]) * Delta +  

+ theta[3] * sqrt(Delta) * W[i] 

> plot(t, X, type = "l", main = "Ornstein-Uhlenbeck process") 

Figure 6 shows three trajectories of the Ornstein-Uhlenbeck process, which differ in 

initial value ݔ, but they are all slowly attracted to the equilibrium state ߤ = 2. 

 

Fig. 6: A simulated trajectory of the Ornstein-Uhlenbeck process – bold line ࢞ = , 

dashed line ࢞ = , dotted line ࢞ =  
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Source: Author’s construction 

However, there also exists a closed formula for the unique solution of equation (5). 

That is the process 

(ݐ)ܺ =
ଵߠ

ଶߠ
+ ൬ݔ −

ଵߠ

ଶߠ
൰ ݁ିఏమ௧ + ଷߠ න ݁ିఏమ(௧ି௨)ܹ݀(ݑ)

௧


, ݐ ≥ 0.              (6) 

Its stochastic differential ݀ܺ(ݐ) can also be computed by the Ito’s formula and it 

satisfies (5)  (see, e.g., (Iacus, 2010)). 

Another way of simulation of the Ornstein-Uhlenbeck process is due to the equation 

(6). The main advantage is that this is the direct formula, however there is a need to simulate 

the stochastic integral with respect to the underlying Brownian motion. Therefore we also 

start with the partition of the interval [0, ܶ] to smaller time steps 0 = ଵݐ < ⋯ < ேݐ = ݐ ,ܶ −

ିଵݐ =  and we approximate the integral by the following sum ,ݐ∆

න ݁ିఏమ(௧ି௨)ܹ݀(ݑ)
௧


≅  න ݁ିఏమ(௧ି௨)ܹ݀(ݑ)

௧

௧షభ

ே

ୀଶ

≅  ݁ିఏమ(௧ି௧షభ)൫ܹ(ݐ) − .൯(ିଵݐ)ܹ
ே

ୀଶ

 

It is indeed a useful way how to handle the stochastic integral generally. Note that the 

necessary increments of the Brownian motion satisfy ܹ(ݐ) − ,0)ܰ ~ (ିଵݐ)ܹ ݐ∆√ ~ (ݐ∆  ∙

 ܰ(0,1) (see Section 1). The following code describes whole simulation. 
> set.seed(222) 
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> N <- 100 # number of time points 

> T <- 1 # length of the interval [0,T] 

> x <- 5 # initial value 

> theta <- c(10, 5, 3.5) # values of the parameters 

> Delta <- T/N # time increment 

> X <- numeric(N+1) # initialization of vector X 

> X[1] <- x 

> t <- seq(0, T, length = N+1) # sequence of time points 

> stoch.integral <- c(0, sapply(2:(N+1), function (x){ 

+ exp(-theta[2]*(t[x] - t[x-1]))*sqrt(Delta)*rnorm(1)})) 

> X <- sapply(1:(N+1), function(x){ 

+ theta[1]/theta[2]+(X[1]-theta[1]/theta[2])*exp(-theta[2]*t[x]) + 

+ theta[3]*sum(stoch.integral[1:x])}) 

> plot(t, X, type = "l", main = "Ornstein-Uhlenbeck process") 

 

Fig. 7: A simulated trajectory of the Ornstein-Uhlenbeck process by formula () – bold 

line ࣂ = . , dashed line ࣂ = , dotted line ࣂ =  

 
Source: Author’s construction 

The bold line in Figure 7 is basically the same trajectory as the bold trajectory in 

Figure 6 – these two methods again coincide. For now, we have chosen to keep the initial 
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value the same (ݔ = 5) and we simulated three trajectories with different parameters of 

volatility ߠଷ. All trajectories are approaching the equilibrium state ߤ = 2, but, again, the 

larger volatility, the larger the variance of the process itself. 

 

Conclusion 
We introduced the most important stochastic processes in theory of probability and 

summarized some numerical methods and ideas on their simulation. We believe it is a useful 

overview, because this topic is not paid too much attention to, and it should be helpful to 

practitioners, programmers and students. 
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