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APPLICATION OF LOGISTIC REGRESSION CLUSTERING  
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Abstract 

Propensity models are very demanding in banks and every improvement of these models could 

bring a lot of additional business value. The classification is solved by them and the logistic 

regression is a frequent statistical method for the model estimation. An application of cluster 

analysis could discover a hidden data structure in the data set, which could possibly improve 

the usability of the bank’s propensity models. A special type of cluster analysis is regression 

clustering, which stands on the model-based approach. It is considered, that each cluster is 

presented by regression hyperplane (an application of the linear regression is the most frequent 

in the literature). The objective is to determine the underlying number of clusters in the data set 

with the simultaneous application of regression functions to each created cluster. The aim of 

this contribution is to estimate the optimal number of clusters in logistic regression clustering 

of a data set for a propensity model by using an information-based technique, such as the 

Bayesian information criterion and the integrated complete-data likelihood criterion. The 

lowest absolute value of a certain criterion determines the optimal number of clusters. For the 

model-based clustering application, the R program with the Mclust package is used to fulfill the 

stated goal.  
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criterion, integrated complete-data likelihood criterion 
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Introduction  

Logistic regression is one of the most used statistical methods in banking, especially for 

estimating propensity models, which are developed for a client’s segmentation. The goal is to 

estimate single regression hyperplane. As Sirota and Řezanková (2018) mention in, it is 

possible to improve the usability of propensity models by discovering a hidden data structure 

in data set by cluster analysis. Combination of regression and clustering is considered e.g. for 
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performing cluster-wise linear regression, where regression functions and objects belonging to 

clusters are estimated simultaneously (DeSarbo et al., 1988). The selected approach is also 

appropriate when the responses of the explanatory variable on each observation are not 

independent of each other (Jayatillake et al., 2011). This approach is also referred to as 

regression clustering, see e.g. (Lou et al., 1993, Shao and Wu, 2005, Qian and Wu, 2011, Zhang, 

2003) for linear regression consideration and (Li et al., 2016) for consideration of logistic 

regression. Basically, all selected articles are based on the same idea. It is assumed, that the 

examined population is composed of an unknown but fixed number of sub-populations or 

clusters (components), which are characterized by class-specific regression hyperplanes 

(density function) and the objective is to determine the underlying number of clusters in the 

data set with simultaneous application of regression functions (the number of clusters is greater 

than 1) to each created cluster.  

The aim of this contribution is to estimate the optimal number of clusters in logistic 

regression clustering of a data set for the propensity model by using the information-based 

technique. For the analysis performance and calculations, we suppose a modeling data set for a 

propensity model for consumer loan. We use the statistical program R (R Core Team, 2018) for 

calculations, where the MClust package (Scrucca et al., 2016) is applied, which is one of the 

most popular R packages for model-based hierarchical agglomerative clustering with the 

random-partitioning approach. It stands on finite Gaussian mixture modeling and uses a 

penalized maximum likelihood approach. It is assumed, that a propensity model estimated by 

logistic regression can be estimated by a mixture model for computational reasons of the MClust 

package. In the text below, some notations are defined about Gaussian finite mixture modeling 

and the model-selection based criteria for estimating the number of clusters. The modeling base 

is also described. This theoretical part is followed by the results of the analysis. 

 

1 Model-based clustering 

Model-based methods could be applied in hierarchical or partitioning type clustering. In 

general, there are two likelihood methods: the random-partitioning approach (the mixture 

likelihood) and the fixed-partitioning approach (the classification likelihood). Regression 

clustering is one class of model-based clustering. Fig. 1 shows the basic idea of the regression 

clustering when the population has been split into two subsets (the objects are displayed as the 

blue and orange points) based on optimization of the determination coefficient for each 

regression hyperplane. Regressions on these two subsets (grey lines) provide better prediction 
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than the single regression (on the whole population – the orange line). As an example, we can 

imagine a population of people with the age between five and nineteen, when the dependency 

is investigated between the weight (the x-axis) and the age (the y-axis). More about the model-

based clustering could be found in (Banfield and Raftery, 1993).  

 

Fig. 1: The regression clustering principle 

 

      Source: own construction 

 

1.1 Gaussian mixture modeling 

The R package MClust use Gaussian finite mixture modeling for model-based clustering and 

also for classification and density estimation. It is considered the n × p-dimensional data set  

x = {x1, x2, …, xi, …, xn} as a sample of independent and identically distributed observations, 

which are specified by a probability density functions of finite mixture model with G 

components (clusters): 

 

                                                               𝑓(𝑥𝑖 ; 𝚿) = ∑ 𝜋𝑘𝑓𝑘(𝑥𝑖; 𝛉𝑘)𝐺
𝑘=1 ,                                                               (1) 

 

where 𝚿 = {𝜋1, … , 𝜋𝐺−1, 𝛉1, … , 𝛉𝐺} are parameters of the Gaussian mixture model, 𝜋1, … , 𝜋𝐺−1 are 

the weights of probabilities with 𝜋𝑘 > 0 and ∑ 𝜋𝑘
𝐺
𝑘=1 = 1, where G means the number of mixture 

components (which is fixed), 𝑓𝑘(𝑥𝑖 ; 𝛉𝑘) is the k-th component density for observation 𝑥𝑖 with 

selected parameter vector 𝛉𝑘. The mixture model parameters 𝚿 are unknown. The maximum 

likelihood estimator (MLE) for the log-likelihood function, which corresponds to (1), is 

computationally demanding. The solution for estimating parameters of the mixture model is the 

application of the expectation-maximization (EM) method, see (Dempster et al., 1977). In the 

model-based clustering, each component of mixture density is mostly associated with a cluster. 
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If we considered the Gaussian mixture model, it means that each object and cluster in a data set 

has Gaussian distribution 𝑓𝑘(𝑥𝑖; 𝛉𝑘) ~ 𝑁(𝝁𝑘, ∑𝑘) and clusters are ellipsoidal, centered at the mean 

vector 𝝁𝑘 and has volume, shape and orientation determined by the covariance matrix ∑𝑘: 

 

                                                                       ∑𝑘 =  λ𝑘𝐃𝑘𝐀𝑘𝐃𝑘
T,                                                             (2) 

  

where λ𝑘 is a scalar controlling the volume of the ellipsoid, 𝐃𝑘 is an orthogonal matrix 

determines the orientation of the corresponding ellipsoid and 𝐀𝑘 is a diagonal matrix, which 

specifies the shapes of the clusters, where the silhouettes of clusters are determined by 

det(𝑨𝑘) = 1 (Banfield and Raftery, 1993).  

It should be noted, that in the model-based approach to clustering, each component of a finite 

mixture model is related to the cluster. 

 

1.2 Model-selection based criteria 

Select how many components (clusters) should be included for Gaussian mixture modeling and 

also for the model-based clustering is important. To determine the number of components we 

can use information criteria. There are two criteria included in the MClust package – BIC (the 

Bayesian information criterion) and ICL (the integrated complete-data likelihood criterion). 

The lowest absolute value of criterion determines the optimal number of components. 

BIC is defined as 

 

                                              BIC𝑀,𝐺 = 2ℓ𝑀,𝐺(𝐱|𝚿̂) − 𝜈log(𝑛),                                              (3) 

 

where ℓ𝑀,𝐺(𝐱|𝚿̂) presents the log-likelihood estimator for the vector of parameters 𝚿 calculated 

by EM method for model 𝑀 with 𝐺 components, 𝜈 is the number of estimated parameters and 

𝑛 is the selection sample. We choose 𝑀 and 𝐺, which maximizes the BIC criterion. 

The second one is the ICL criterion in the form 

 

                                          ICL𝑀,𝐺 = 𝐵𝐼𝐶𝑀,𝐺 + 2 ∑ ∑ 𝑐𝑖𝑘log(𝑧𝑖𝑘)𝐺
𝑘=1

𝑛
𝑖=1 ,                                 (4) 

 

where 𝑧𝑖𝑘 stands for the conditional probability that 𝑥𝑖 is from the k-th component. The 𝑐𝑖𝑘 = 1 

if the i-th object in a data set belongs to cluster k, otherwise 𝑐𝑖𝑘 = 0 (Scrucca et al., 2016). 
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1.3 Modeling base 

It is considered the modeling base (where there are 154 113 objects and 2 312 variables), which 

is used for real developing of the propensity model for consumer loan by logistic regression. 

Due to calculations reasons, in the first step, we apply a method of the significant variables 

selection (it is based on a comparison of the correlation between explanatory variables and the 

target variable, which means, if the client bought (Y = 1) or did not buy (Y = 0) a consumer 

loan). It chooses the best 100 quantitative variables. In the second step, we apply factor analysis 

and choose 12 created factors as the final data set (154 113 × 12) for the next calculations – see 

(Sirota and Řezanková, 2018). 

 

2 Results 

We use the MClust package in the R program to determine the optimal number of clusters in 

the final data set by application of the model-based clustering. There are implemented 14 

Gaussian finite mixture models with different geometric characteristics, where Tab. 1 shows 

parameters of the within-group covariance matrix ∑𝑘 for these models – see (Scrucca et al., 

2016).  

Tab.1: Parameters of covariance matrix ∑𝒌 

 

Source: own construction according to Scrucca et al. (2016) 

For each model, BIC and ICL criteria are calculated. The lowest value (in absolute) of the 

criterion determines the optimal number of clusters (the mclustBIC and mclustICL function). 

Figs. 2 and 3 show criteria for each model. The best one is the EEV model with consideration 

of 9 clusters in the data set, where clusters are ellipsoidal, centered at the mean vector 𝝁𝑘 and 
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have the equal volume and shape and variable orientation determined by the covariance matrix 

∑𝑘. We could say, that examined clients (objects in the data set) are from the same population 

with the same behavior within clusters, that differs from other clusters. Behavior means if the 

client bought or did not buy the product. Nine models gain values of BIC and ICL criteria only 

for one component (VII, VEI, VVI, EVE, VEE, VVE, VEV, EVV, VVV). 

Fig. 2: Values of the BIC criterion according to the numbers of components (clusters) 

 

Source: own construction in the R 

Fig. 3: Values of the ICL criterion according to the numbers of components (clusters) 

 

Source: own construction in the R 
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For evaluating a clustering solution, the adjusted Rand index (ARI) is implemented (the 

adjustedRandIndex function). Higher values (which are from 0 to 1) of the index means a higher 

agreement between partitions of objects into clusters (Hubert and Arabie, 1985). The quality of 

partitioning is not so high, ARI = 0.183. 

The MclustDR function transforms the data set from multi-dimensional to two-dimensional 

subspace (Dir1 and Dir2 variables).  Fig. 4 shows how objects are partitioned into nine clusters. 

We can see from the graph that green, orange and purple clusters could be considered as well 

separated and others 6 clusters are not, which is reflected by the low value of ARI. 

Fig. 4: The clustering structure of objects 

Source: own construction in the R 

Tab. 2 shows the sizes of individual clusters and Tab. 3 shows their proportional distribution 

according to the target variable. Clusters 1 and 2 are the largest (22.66 % and 43.84 %), where 

there are mostly clients, who did not buy the consumer loan (class = 0). On the other hand, most 

clients who bought the consumer loan (class = 1) are in clusters 3 and 7 (18.01% and 27.97 %), 

which means that if we wanted to reach clients most likely to purchase the consumer loan, they 

would be from these clusters. 

Tab.2: The sizes of individual clusters within the classes 

class/cluster 1 2 3 4 5 6 7 8 9 

0 30 502 66 039 2 016 4 548 1 548 6 300 2 279 2 812 8 682 

1 4 419 1 519 5 293 1 684 702 3 917 8 219 1 403 2 231 

Total 34 921 67 558 7 309 6 232 2 250 10 217 10 498 4 215 10 913 
Source: own construction 
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Tab.3: The proportions of individual clusters within the classes 

class/cluster 1 2 3 4 5 6 7 8 9 

0 24.46% 52.95% 1.62% 3.65% 1.24% 5.05% 1.83% 2.25% 6.96% 

1 15.04% 5.17% 18.01% 5.73% 2.39% 13.33% 27.97% 4.77% 7.59% 

Total 22.66% 43.84% 4.74% 4.04% 1.46% 6.63% 6.81% 2.74% 7.08% 
Source: own construction 

 

Conclusion 

Logistic regression is the most applicable statistic method in banking. On the other hand, there 

is cluster analysis, which is not so much used in practice although it discovers a hidden data 

structure in a data set. This contribution follows the paper (Sirota and Řezanková, 2018) and 

applies the model-based clustering for estimating the optimal number of clusters in the data set, 

which is used for the real development of the propensity model for consumer loan. To fulfill 

the aim, we used the R package MClust, which is one of the most popular R packages for model-

based hierarchical agglomerative clustering with the random-partitioning approach. It stands 

on finite Gaussian mixture modeling and uses a penalized maximum likelihood approach, 

where parameters are estimated by EM method. For this reason, we considered, that logistic 

regression could be expressed as a mixture model. First, we mentioned some notations about 

Gaussian mixture modeling and BIC and ICL criteria for determining the optimal number of 

components (clusters). We also described the final data set (154 113 × 12), where we used 

factors from factor analysis as the input. The final data set could be considered as extensive 

compared to data sets, which are used in other articles dealing with model-based clustering. The 

theoretical part follows the results of the analysis. For determining the optimal number of 

clusters by selected criteria, the MClust implemented 14 Gaussian finite mixture models, which 

have different geometric characteristics. The lowest absolute value of BIC and ICL criteria 

(which indicates the optimal number of clusters) had the EEV model containing nine 

components (clusters). Most of the clients who did not buy the product were in clusters 1 and 

2. These clusters were also the largest. On the contrary, most clients who bought the product 

were in clusters 3 and 7. Unfortunately, the quality of partitioning objects to created clusters 

measured by the adjusted Rand index was not so high (ARI = 0.183). For further research, it 

would be appropriate to implement (in the R program) fixed-partitioning approach (the 

classification likelihood) in the model-based clustering and apply the other suitable criteria. 
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