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REGULARIZATION TO DEEP LEARNING 
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Abstract 

In this paper, tools for regression modeling suitable for high-dimensional economic data are 

presented and discussed, including robust regularized linear regression estimators, 

regularization networks, and tools of deep learning. We discuss here that the analysis of high-

dimensional data, so practical for specific econometric applications, requires conceptually 

novel tools, including robust regularized neural networks, allowing to down-weight the 

influence of outliers in the data, i.e. require more intricate tools compared to big data analysis. 

While deep learning tools do not converge for high-dimensional data, robust and regularized 

methods available for linear regression have not been extended to the nonlinear model yet. 

We model here the travel and tourism competitiveness index as a response variable explained 

by several tourism infrastructure characteristics to illustrate several robust tools for regression 

analysis. The results of the robust regularized methods are not harmed by outliers in the 

dataset, while it is beneficial that they (just like non-robust regularized methods) allow to 

order the variables according to their significance for the regression fit. 

Key words: regression, neural networks, robustness, high-dimensional data, regularization  

JEL Code: C45, C14, C63 

 

Introduction 

Regression modeling is well known as a fundamental task in current econometrics. However, 

classical estimation tools for the linear regression model are not applicable to high-

dimensional data. Although there is not an agreeement about a formal definition of high-

dimensional data, usually these are understood either as data with the number of variables p 

exceeding (possibly largely) the number of observations n, or as data with a large p in the 

order of (at least) thousands. In both situations, which appear in various field including 

econometrics, the analysis of the data is difficult due to the so-called curse of dimensionality 

(cf. Kalina (2013) for discussion). Compared to linear regression, nonlinear regression 
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modeling with an unknown shape of the relationship of the response on the regressors 

requires even more intricate methods. 

The aim of this paper is to overview available approaches to regression for data with 

a large p, including regularized linear methods (Section 1) or regularized artificial neural 

networks (Section 2) for nonlinear regression, underutilized in economic applications so far. 

We include a systematic overview of the importance of the topic of high-dimensional 

regression and big data analysis in econometrics (Section 3). An analysis of a tourism dataset   

by means of (possibly) robust regularized regression estimates is presented in Section 4, 

illustrating  the ability to arrange variables according to their relevance (i.e. variable selection) 

to be their main advantageous property. 

 

1 Robust regularized regression 

In Sections 1 and 2, we consider the standard linear model 

                         𝑌𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ +  𝛽𝑝𝑋𝑖𝑝 + 𝑒𝑖,         𝑖 = 1, … , 𝑛,                                   (1) 

where 𝑌1, … , 𝑌𝑛 are values of a continuous response variable and 𝑒1, … , 𝑒𝑛 are random errors 

(disturbances) with a common value of 𝑣𝑎𝑟 𝑒𝑖 = 𝜎2 with 𝜎 > 0. The task is to estimate the 

regression parameters 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)𝑇 . This section presents an overview of methods 

suitable for the situation with 𝑛 < 𝑝. 

The lasso estimator or the ridge regression are known tools for high-dimensional 

regression in (1) presented e.g. in Hastie et al. (2015). They represent penalized versions of 

the least squares estimator, while the lasso considers a regularization in the 𝐿1-norm and the 

ridge regression in the 𝐿2-norm. None of the two methods is however robust with respect to 

severely outlying measurements (outliers) in the data. The lasso (but not the ridge regression) 

is able to yield a sparse solution, ignoring the redundant variables completely. The 

computation of these regularized regression estimates is available in packages sparsereg or 

hdm of R software. 

Recently, several robust regularized regression estimates have been proposed. They 

require all the regressors to be continuous. We can say that connecting robustness and 

regularization in the regression context is more straightforward compared to the difficulties 

encountered in the classification task. Nevertheless, the available robust regularized 

estimators have been proposed mainly for biomedical regression modeling, while high-

dimensional applications in econometrics are much less frequent. 
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Particular examples of robust regularized regression estimators include the sparse least 

trimmed squares (LTS) estimator of Alfons et al. (2013), obtained by regularization of the 

least trimmed squares (LTS) estimator. The so-called sparse partial robust M regression 

(SPRM) of Hoffmann et al. (2015) is related to (robust) partial least squares (PLS) estimator 

for a multivariate response. A penalized quasi-likelihood M-estimator proposed by Avella-

Medina and Ronchetti (2018) is also applicable to generalized linear models. Cohen-Freue et 

al. (2019) proposed a robust version of the elastic net estimator, combining the lasso and ridge 

regression estimates in an optimized way. Smucler and Yohai (2017) proposed penalized 

MM-estimators with oracle properties, allowing to identify correctly the set of relevant 

variables among the set of all variables, i.e. allowing the estimator to optimally extract the 

knowledge  under the presence of a possibly large set of redundant variables. 

Implementations of some of the available robust regularized regression estimators are 

available  in packages robustHD, sparseLTSEigen, or sprm of R software. Extensions of the 

linear model (1) to the instrumental variables (IV) estimator for 𝑛 < 𝑝 have been investigated 

(again) only for biomedical applications. Regularized version of the instrumental variables 

estimator, suitable for high-dimensional economic data, seem to remain an open problem, 

together with  extensions to regularized versions of the generalized method of moments 

(GMM). 

         

2 Regression neural networks  

While neural networks are important tools for nonlinear regression modeling, only regularized 

neural networks are suitable for high-dimensional data. In this section, we recall the so-called 

regularization networks, also known as the generalized ridge estimators, and describe their 

connection to (much more popular) radial basis function networks.  

 

2.1 Model 

We consider the regression task to model a continuous response 𝑌1, … , 𝑌𝑛 by means of 

p independent variables (regressors, features) available for n observations (measurements, 

instances), where the values for the i-th observation (𝑖 = 1, … , 𝑛) are denoted as 𝑋𝑖1, … , 𝑋𝑖𝑝.  

All regressors have to be continuous. Instead of (1), neural networks are formulated for the 

nonlinear regression model  

                                                   𝑌𝑖 =  𝑓(𝑋𝑖) + 𝑒𝑖,         𝑖 = 1, … , 𝑛,                                         (2) 
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where the shape of the function f  is unknown. Neural networks seem to be still underutilized 

tools in econometric modeling; for example it is worth noting that (even plain neural 

networks) are not described in monographs on nonparametric econometrics. Recent 

applications of neural networks in economics include e.g. the study of Jang and Lee (2018), 

who considered Bayesian neural networks for predicting time series of Bitcoin processes, or 

the application of Livieris (2019) of recurrent neural networks to forecasting results of 

marketing campaigns or forecasting in the context of credit approval. 

 

2.2 Radial basis function neural networks 

Radial basis function (RBF) networks represent an important class of feedforward neural 

networks for 𝑛 > 𝑝. They contain an input layer with p inputs, a single hidden layer with the 

total number N of RBF units (neurons), and a linear output layer. The user chooses N together 

with a radially symmetric function denoted here as ρ. Denoting the Gaussian density as ρ, the 

residuals of the RBF network can be expressed as  

                                  𝑢𝑖 = 𝑌𝑖 − ∑ 𝑎𝑗𝜌(‖𝑋𝑖 − 𝑐𝑗‖)𝑁
𝑗=1 ,         𝑖 = 1, … , 𝑛,                                  (3)    

with parameters 𝑐1, … , 𝑐𝑁 ∊ ℝ𝑝 and 𝑎1, … , 𝑎𝑁 ∊ ℝ, and possibly with other parameters 

corresponding to ρ. Parameters of RBF networks, just like those of MLPs, are typically found 

by means of minimizing the sum of squared residuals.  

 

2.3 Regularization networks      

Regularized versions of various types of neural networks have been available, which are 

suitable for data with 𝑛 < 𝑝. Here, we describe the so-called regularization networks of Girosi 

et al. (1995), which remain relatively little known. Other approaches, including penalized 

versions of multilayer perceptrons, are popular but more complicated from the computational 

point of view. For example, regularized multilayer perceptrons has to be solved by means of 

a gradient approach to nonlinear optimization. However, it is necessary to admit that the 

regularization itself does not improve the robustness of the neural networks with respect to 

outlying measurements (Kalina and Vidnerová, 2019). In addition, there is none of the 

available regularized versions of neural networks implemented in R statistical software. 

In the search for the regression function (2), a naïve approach 

                                                         min
𝑓

 ∑ (𝑌𝑖 − 𝑓(𝑋𝑖))2𝑛
𝑖=1                                                    (4) 
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is replaced by  

                                               min
𝑓

 {∑ (𝑌𝑖 − 𝑓(𝑋𝑖))2𝑛
𝑖=1 +  𝜆‖𝑓‖𝐾}                                          (5) 

where 

                                                 ‖𝑓‖𝐾 = ∑ ∑ 𝛽𝑖𝛽𝑗𝐾(𝑋𝑖, 𝑋𝑗)𝑛
𝑗=1

𝑛
𝑖=1                                             (6) 

and K is a selected kernel. The theory of reproducible kernel Hilbert space (RKHS), as a part 

of functional analysis, allows to measure the distance between p-dimensional vectors by 

means of a selected kernel K; see Hastie et al. (2015). Commonly, the user choose K as the 

density of a normal distribution with expectation 0 and some fixed variance 𝜎2.  

The solution of (5) can be derived to have the form  

                                                𝑓(𝑥) = ∑ 𝛽𝑖𝐾(𝑥, 𝑋𝑖),     𝑛
𝑖=1 𝑥 ∊ ℝ𝑝,                                         (7) 

which of course depends on 𝛽 = (𝛽1, … , 𝛽𝑛)𝑇 . It is possible to find an explicit form of 

an estimate of β, while the task (5) is not ill-posed any more. Using now the notation  

                                                          𝐾 = (𝐾(𝑋𝑖, 𝑋𝑗))
𝑖,𝑗=1

𝑛

,                                                     (8) 

the task (5) can be expressed by means of the symmetric square matrix K as a penalized 

version of the system of normal equations 

                                               min
𝑓

 {∑ ‖𝑌 − 𝐾𝛽‖2𝑛
𝑖=1 +  𝜆𝛽𝑇𝐾𝛽}.                                          (9) 

By means of derivatives we find that the minimum is obtained for  

                     𝛽̂ = (𝐾𝑇𝐾 + 𝜆𝐾)−1𝐾𝑇𝑌 = [(𝐾 + 𝜆𝐼)𝐾]−1𝐾𝑇𝑌 = (𝐾 + 𝜆𝐼)−1𝑌.                  (10) 

This estimate 𝛽̂ is commonly denoted as a regularization network or generalized ridge 

esetimator, where the latter evokes a connection to the ridge regression (see Section 1). 

Particularly, the main diagonal in (10) is regularized (shifted) within the task of computing the 

inverse of 𝐾 + 𝜆𝐼. Finally, the fitted value of the response for a given 𝑥 ∊ ℝ𝑝 is obtained by 

means of an empirical counterpart of (7), i.e. 

                                              𝑓(𝑥) = ∑ 𝛽̂𝑗𝐾(𝑥, 𝑋𝑗),     𝑛
𝑗=1 𝑥 ∊ ℝ𝑝.                                         (11) 

Formulas (7) and (11) reveal the connection or regularization networks to RBF networks, i.e. 

both correspond to an RBF network with a particular choice (8) of the kernel chosen in (5).  
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3 Deep learning 

The potential of big economic data seems to have been acknowledged, at least in theoretical 

papers, and deep learning represents the methodology suitable for their analysis. The 

computer science community has attempted to find deep learning applications in econometrics 

and to draw attention of econometricians. However, little attention has been paid to the 

important question in which economic applications big data emerge and which tasks are the 

most useful ones, leading to using particular big data analysis tools. Big data, as repeatedly 

defined in the literature, require (among others) a large number n of measurements. It is clear 

that big data can be hardly obtained in economics by means of standard ways and throughout 

all branches of economic applications, e.g. in management in commercial companies. Specific 

non-traditional sources of big economic (and social) data were described by Blazques and 

Domenech (2018) as the internet, social networks, and urban or mobile sensors. In these 

specific domains, the analysis of big data is of course useful. On the whole, however, we have 

to say that it is typically not so easy to obtain big data in economics compared to some other 

disciplines (including natural sciences or medicine). 

Deep learning is a broad concept encompassing a variety of particular machine 

learning tools for the analysis of big data, popular in current computer science. Tools for 

analyzing big economic data were overviewed e.g. by Varian (2014), with a focus on 

dimensionality reduction techniques, however without specifying potential sources of big 

economic data. Convolutional neural networks represent one important class of deep learning 

tools, suitable especially for data in the form of images; they exploit specific heuristics 

including dimensionality reduction in a specific form, which is unsuitable for economic 

regression data. Recurrent neural networks are another class within the deep learning 

methodology, suitable for non-stationary economic time series, which are long and which are 

at the same time modeled by a large number of regressors. Deep networks obtained as direct 

deep analogies of available neural networks (e.g. multilayer perceptrons) are conceptually 

analogous to standard (shallow) approaches and bring difficulties only from the computational 

point of view. They can be robustified by the same approaches as the standard (shallow) 

networks, e.g. using the approach of Kalina and Vidnerová (2019), only with a need for more 

efficient algorithms.  

We can say that the analysis of big (numerical) data does not bring conceptually new 

challenges, as it requires only computationally more efficient algorithms, while the analysis of 

high-dimensional data requires new approaches and presents a real challenge for 
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econometricians. Clearly, high-dimensional data cannot be analyzed by deep learning tools, 

which require a large n and can hardly converge to the solution for data with 𝑛 < 𝑝.  

It is already evident that we have to strictly distinguish between big data and high-

dimensional data. Concerning the importance of high-dimensional regression in economics, 

the task with high-dimensional data seems useful again only in specific tasks, e.g. in the 

analysis of panel data with a large number of panels, or portfolio optimization. In other areas, 

such as  macroeconomic modeling, high-dimensional data are much less to be encountered. 

Also in management science, other tools (e.g. of game theory, operations research or 

classification analysis), especially for a small p, seem to be much more common.  From the 

methodological point of view, dimensionality reduction (i.e. prior to performing the 

regression modeling) is not needed. Not even a (possibly highly) robust dimensionality 

reduction (e.g. that of Kalina and Schlenker (2015)) is needed, if regularized approaches 

ensuring a sparse solution are used.  

 

4 Example 

Our aim is to compare the regression methods described in this paper, namely robust 

regularized regression estimators and regularization neural networks. However, it is difficult 

to find a publicly available high-dimensional economic dataset, as we were actually not able 

to find in publicly available repositories, and it remains difficult to simulate realistic data with 

𝑛 < 𝑝. Thus, we take resort to a regression dataset with 𝑛 > 𝑝. The Travel and Tourism 

Competitiveness Index (TTCI) dataset with 𝑝 = 12 and 𝑛 = 141, which was previously 

analyzed by (robust) linear regression (especially regression quantiles) in Kalina et al. (2019), 

is analyzed here. The tourist service infrastructure measured across 141 countries is modeled 

as a response of 12 characteristics of TTCI, while all variables come from the year 2015. All 

the 12 regressors are continuous random variables. Web perform all the computations in R 

software. 

We present the results of the least squares, lasso, and LTS-lasso, where the last 

considers the default value of trimming. Table 1 presents values of MSE and trimmed MSE 

(TMSE) computed by means of various regression methods. TMSE is formally defined as 

                                                         𝑇𝑀𝑆𝐸(𝛼) =
1

ℎ
∑ 𝑟(𝑖)

2ℎ
𝑖=1 ,                                                (12) 

where ℎ is integer part of 𝛼𝑛, 𝛼 ∊ [0.5,1) is a fixed constant (ensuring 𝑛 2 ≤ ℎ ≤ 𝑛⁄ ), and 

squared prediction errors are arranged as 𝑟(1)
2 ≤ ⋯ ≤ 𝑟(𝑛)

2 . We use 𝛼 = 3/4 here. 
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Further, we performed the variable selection by means of t-tests for the least squares 

estimator; the backward selection yields 5 significant variables here. These are reported in 

Table 2. None of the two regularized estimators is able to induce sparsity here, as the dataset 

is too small, and the final model uses all the 12 regressors. As the lasso and LTS-lasso 

perform ordering of the variables with respect to their importance for the regression task (i.e. 

for explaining the response), Table 2 presents the variables arranged according to this 

relevance. We do not present deep learning results here, because it was revealed as highly 

unstable for this dataset, particularly because n is insufficient for using deep learning at all. 

 

Tab. 1: Prediction error measures evaluated for three regression estimators over the 

TTCI dataset 

 MSE TMSE 

Least squares 0.449 0.160 

Lasso 0.461 0.162 

LTS-lasso 0.453 0.161 

Source: own computation 

 

Tab. 2: Significant variables in the TTCI dataset arranged according to their relevance 

in the regression fit, starting from the most significant to the least significant 

Least squares 6, 5, 9, 1, 10 

Lasso 6, 5, 9, 1, 3, 10, 4, 7, 2, 11, 12, 8 

LTS-lasso 5, 6, 3, 10, 9, 7, 8, 11, 1, 12, 4, 2 

Source: own computation 

 

Conclusions 

This paper recalls regression estimators suitable for high-dimensional econometric modeling, 

namely linear methods (robust regularized regression estimators) as well as nonlinear ones 

(regularized neural networks). Robust regularized regression estimator for high-dimensional 

data allow to select a subset of the relevant measurements and to distinguish between relevant 

and redundant regressors in the model. Still, their assumption of the model to be linear is 

a serious limitation, although the approximation of the real relationship of the response on the 

regressors by a linear model is often (but not always) perceived as a reasonable approximation 

in economic applications.  

Regularization networks are more flexible; they require to find a suitable architecture, 

which can be performed by computational approaches (cross validation). In the analysis of 
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a nonlinear trend, regularization networks are more suitable than (standard or robust) 

regularized regression estimators, as they are able to perform nonlinear modeling. We 

formulate open questions in the area of regularization networks and deep learning, namely the 

need to improve their robustness to outliers. However, regularization networks do not contain 

as many additional characteristics as lasso or LTS-lasso; see Kalina et al. (2019) for a more 

detailed analysis and statistical interpretation of the tourism dataset. Here, robust regularized 

regression estimates are used to illustrate the ability to arrange variables according to their 

relevance (i.e. variable selection) to be one of their main advantageous properties. The 

numerical results of the analysis of the TTCI dataset do not show many differences between 

robust and non-robust methods, which indicates the dataset not to contain severe outliers. 

The regularized networks depend on all the available measurements and therefore do 

not possess a global robustness. Our work may also be perceived as preparation for our future 

study of robust regularized neural networks, which seem to be still missing in the literature. 

Particularly, we would like to propose inter-quantile estimates by means of regularized neural 

networks, or to use regularized neural networks with the loss function of the (highly robust) 

least weighted squares estimator. 

 

Acknowledgment  

The work was supported by the projects 19-05704S and 18-23827S of the Czech Science 

Foundation. Thanks to Eva Litavcová and Petra Vašaničová for providing the TTCI dataset. 

 

References 

Alfons, A., Croux, C., & Gelper, S. (2013). Sparse least trimmed squares regression for 

analyzing high-dimensional large data sets. Annals of Applied Statistics, 7(1), 226-248  

Avella-Medina, M. & Ronchetti, M. (2018). Robust and consistent variable selection in high-

dimensional generalized linear models. Biometrika, 105(1), 31-44 

Blazquez, D. & Domenech, J. (2018). Big Data sources and methods for social and economic 

analyses. Technological Forecasting & Social Change, 130, 99-113 

Cohen-Freue, G., Kepplinger, D., Salibián-Barrera, M., & Smucler, E. (2019). Robust elastic 

net estimators for variable selection and identification of proteomic biomarkers. Annals of 

Applied Statistics, 13(4), 2065-2090 

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks 

architectures. Neural Computation, 7(2), 219-269 



The 14th International Days of Statistics and Economics, Prague, September 10-12, 2020 

427 
 

Hastie T., Tibshirani R., & Wainwright M. (2015). Statistical learning with sparsity. The lasso 

and generalizations. CRC Press, Boca Raton 

Hoffmann, I., Serneels, S., Filzmoser, P. & Croux, C. (2015). Sparse partial robust 

M regression. Chemometrics and Intelligent Laboratory Systems, 149, 50-59 

Jang, H. & Lee, J. (2018). An empirical study on modeling and prediction of bitcoin prices 

with Bayesian neural networks based on blockchain information. IEEE Access, 6, 5427-5437 

Kalina, J. (2013). Highly robust methods in data mining. Serbian Journal of Management, 

8(1), 9-24 

Kalina J., Schlenker A. (2015). A robust supervised variable selection for noisy high-

dimensional data. BioMed Research International, 2015, 320385 

Kalina, J., Vašaničová, P., & Litavcová, E. (2019). Regression quantiles under 

heteroscedasticity and multicollinearity: Analysis of travel and tourism competitiveness. 

Ekonomický časopis, 67(1), 69-85 

Kalina, J. & Vidnerová, P. (2019). Robust training of radial basis function neural networks. 

Lecture Notes in Artificial Intelligence, 11508, 113-124 

Livieris, I.E. (2019). Forecasting economy-related data utilizing weight-constrained recurrent 

neural networks. Algorithms, 12, 85 

Smucler, E. & Yohai, V.J. (2017). Robust and sparse estimators for linear regression models. 

Computational Statistics and Data Analysis, 111, 116-130 

Varian, H.R. (2014). Big data: New tricks for econometrics. Journal of Economic 

Perspectives, 28(2), 3-28 

 

 

Contact  

Jan Kalina  

The Czech Academy of Sciences, Institute of Computer Science 

Pod Vodárenskou věží 2, 182 07, Praha 8, Czech Republic 

kalina@cs.cas.cz 

 

Petra Vidnerová  

The Czech Academy of Sciences, Institute of Computer Science 

Pod Vodárenskou věží 2, 182 07, Praha 8, Czech Republic 

petra@cs.cas.cz 

 

mailto:kalina@cs.cas.cz
mailto:petra@cs.cas.cz

