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Abstract 

Knowledge of minimal cut sets and minimal path sets of a coherent system are vital for its 

probabilistic assessment of reliability. Fault trees and Petri Nets are two main methodologies 

of modeling reliability of complex systems. It is an open problem, which setting is 

computationally cheaper for finding minimal sets, because this problem is NP-hard both for 

fault trees (Rosenthal, 1975) and Petri Nets. Algorithms to find critical cut sets and minimal 

path sets in both settings are reviewed and its efficiency is assessed for a real-life system from 

electrical engineering – the “three-motor” system (Vesely et al., 1981).  Different probabilistic 

bounds of the reliability function using minimal sets are reviewed and their performance is 

studied by numerical experiment for this model example. However, there is no clear decision 

on which setting is better to find minimal sets of a system. 

Key words:  reliability, fault trees, stochastic Petri Nets, time to failure, probability bounds of 
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Introduction  

There is a growing a demand for the precise calculation of reliability of complex systems. An 

example of such a system is a power plant, computer network, human body. These methods are 

applied in many fields like energetics, computer science, medicine, transportation and 

engineering. The systems are classified to Repairable and Non-Repairable Systems. We treat 

only Non-Repairable Systems in this paper. Fault trees (see Limnios, 2007) and Petri Nets (see 

monograph of Bause and Kritzinger, 2002) are two main methodologies of modeling of 

reliability of a complex systems.  

Because finding minimal sets is a NP-hard problem (Rosenthal, 1975), it is an open 

problem, which setting is computationally cheaper. Liu and Chiou (1997) found a one-to-one 

relation between a fault tree and a Petri Net of a system. Therefore, in practice we can easily 

switch between settings, if needed. They also developed a recursive top-down matrix algorithm 
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to find all minimal sets of the system. They also claim without any proof this algorithm is more 

computationally efficient than algorithms for fault trees. To our best knowledge, no complexity 

analysis or computational studies have been carried out yet.  

In both methodologies, a coherent system is represented as a tree in the graph theory. In 

both settings, it is vital to know both minimal cut sets and minimal path sets of a system. For 

state assessment of a system following concepts are defined (Limnios, 2007): 

• Path: a subset of components of a system whose simultaneous good functioning 

assures good functioning of the system regardless of the functioning of the other 

components. 

• Minimal path: a path that does not contain another path. 

• Cut set: a subset of components of a system whose simultaneous failure leads to 

the system failure regardless of the failure of the other components. 

• Minimal cut set: a cut set that does not contain another cut set. 

Set of the minimal paths is denoted as 𝐶 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑐} and set of minimal cuts is denoted 

as 𝐾 = {𝐾1, 𝐾2, ⋯ , 𝐾𝑘}.  The goals of the paper are twofold. In the first part, am example is 

worked out, which representation is more suitable to find minimal sets of a system. In the 

second part, we compare tightness of several probability bounds of the reliability function of a 

system. 

 

1 Elements of Reliability Theory and Coherent Systems 

Let 𝑋 be a continuous random variable representing time to failure of the single-component 

system with cumulative distribution function 𝐹(𝑡) = 𝑃(𝑋 ≤ 𝑡) and its density function 𝑓(𝑡). 

Survival function (reliability) is the complement to cumulative distribution function (Rausand 

and Oien, 1996) 

                        ( ) 1 ( ) ( ) ( ) .
t

R t F t P X t f x dx



= − =  =                                                            (1) 

Note, that 𝑅(0) = 1 and 𝑅(∞) = 0. Mean time to failure (MTTF) is defined as the expectation 

of the time to failure, e.g. 𝐸(𝑋). The exponential distribution is the most used for modeling 

time failure in reliability theory, which represents a Markovian system (without memory - a 

system is not aging). For fixed time 𝑡 > 0  and parameter 𝜆 > 0 it holds 

 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡, 𝑅(𝑡) = 𝑒−𝜆𝑡, 𝑀𝑇𝑇𝐹 = 𝐸(𝑋) = 1 𝜆⁄ .         

Systems  with memory are studied by Semi-Markov processes theory (Barbu et al., 2004). 
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A multi-component system defined as a binary system with 𝑛 components: 𝐶 =

{1,2, … , 𝑛}. For each component 𝑖 it is defined a binary variable 𝑥𝑖  (0: the component works, 1: 

the component is down). Let 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ {0,1}𝑛 be the vector jointly describing the 

states of the components. A binary structural function 𝝋(𝒙)  is defined as 𝝋(𝒙) = 1, if the 

system works,𝝋(𝒙) = 0, if the system fails. 

Good functioning of a series system depends on the simultaneous functioning of all its 

components. If at least one component fails, then the system also fails. In fault tree setting it is 

modeled by gate OR. Good functioning of a parallel system depends on good functioning is 

assured by functioning of least one of its components.  Only if all components fail, then the 

whole system also fails. In fault tree setting is modeled by gate AND. 

Both in theory and application of the reliability theory, research is limited mostly to 

coherent systems. A coherent system has these properties (Limnios, 2007): 

• It consists only of parallel and series systems (e.g. gates AND and OR). 

• It has no redundant components (whose states do not affect the state of the system). 

• It does not contain a component and its negation simultaneously. 

• It contains neither loops nor circuits in its graph representation. 

Using minimal path sets or minimal cut sets its structural function can be simplified as 

 

       ( ) ( ) ( )
1 1
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c k
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Let be 𝑆 = (𝐶, 𝝋)  a coherent system of order (number of its components) 𝑛 ≥ 1 and 

𝑋𝑖 be an alternative random variable (with values 𝑥𝑖 ∈ {0,1}) with parameter 𝑝𝑖 describing the 

state of the ith component (𝑖 = 1,2, … , 𝑛) . Reliability of the system 𝑅(𝐩), where 𝐩 =

(𝑝1, 𝑝2, … , 𝑝𝑛) is defined as the probability, that the system is works well. Using minimal cut 

sets or minimal path sets, it holds 

𝑅(𝐩) = 𝑃(𝐶1 ∪ 𝐶2 ∪ ⋯ 𝐶𝑘) = 1 − 𝑃(𝐾1 ∪ 𝐾2 ∪ ⋯ 𝐾𝑘).                             (3) 

Different bounds for reliability function were established (see Limnios (2007)) using minimal 

sets. Minimal sets bounds are established as follows. A lower bound is derived using minimal 

cut sets and an upper bound is using minimal paths sets 

∏ [1 − ∏ (1 − 𝑝𝑖𝑖∈𝐾𝑗
)]𝑘

𝑗=1 ≤ 𝑅(𝐩) ≤ 1 − ∏ (1 − ∏ 𝑝𝑖𝑖∈𝐶𝑗
)𝑐

𝑗=1 .                    (4) 
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For 2-by-2 disjoint cut minimal sets (𝐾𝑖 ∩ 𝐾𝑗 = {∅}, if 𝑖 ≠ 𝑗) the upper bound equals to the 

reliability function . The same rule applies to minimal paths and the lower bound. “Min-max” 

bounds are  

                                          ( ) ( )
11

max min 1 1 .
j j

i i
j kj c

i C i K

p R p
  

 

   
  − −   

   
   
 p                                (5) 

Trivial bounds are since the reliability of a coherent system lies between the reliabilities of the 

series and parallel system  
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Note that, these bounds work poor. 

 

1 Fault Trees and Petri Nets 

We present both representations of a system in a form enabling only static analysis. This setting 

can be further extended by adding a time variable, but this extension is not a goal of the paper. 

Events of fault trees are represented by these graphic symbols (Limnios (2007), Vesely et al. 

(1981)): 

• Rectangle – top or intermediate event (the system is down). 

• Circle – basic event. 

• Triangle – transfer (the fault tree is further developed). 

Petri Nets (Petri, 1962) was designed to study information systems in computer science. 

They have been generalized and applied in many other fields (for applications in reliability 

modelling see monograph of Bause and Kritzinger (2002) among others). The graphic symbols 

of Petri Nets are summarized below (Bause and Kritzinger, 2002) 

• Circle (place) – object, component of a system. 

• Dot (token) – specific value or state of the object, component. 

• Rectangle (transition) – activities changing state or value of the object, component. 

• Arrow (arc) – connection of places and transitions. 

Places can represent hardware and software components or modules of a software system. 

Transitions represent relations of components of a system (i.e. transactions between hardware 

components or modules of software). 

Place-Transition Petri Nets enable only static analysis of the coherent system. To add 

time domain of a system Place-Transition Petri Nets were generalized to Stochastic Petri Nets 

(Natkin, 1980 or Molloy, 1981). Coherent system can be easily analyzed in both settings 

simultaneously because Liu and Chiou (1997) established the one-to-one relationship between 

its Place-Transition Petri Net and corresponding fault tree. Top, intermediate, and basic events 
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are represented as places in Petri Nets. Note that, the events in the fault tree setting resemble 

hardware/software components of a system. 

 

1.1 Algorithms to find minimal cut sets and minimal path sets 

Algorithms for both settings are presented. Liu and Chiou (1997) proposed a recursive top-

down matrix algorithm to find both minimal cut sets and minimal path sets simultaneously. It 

proceeds as follows: 

• Write down the numbers of places horizontally if the output place is connected by multi-

arcs to transitions. 

• Write down the numbers of places vertically if the output place is connected by an arc 

to a common transition. 

• As soon as all places are replaced by places representing basic events, a matrix is 

created. If there is a common entry located between rows or columns, it is also the entry 

present in each row or column. The column vectors of the matrix contain cut sets, the 

row vectors then paths sets. 

• Finally, select the minimal cut sets and minimal path sets. 

Liu and Chiou (1997) claim without any proof this algorithm is more efficient than the ones for 

fault trees. By our best knowledge, no computational study of algorithms was done yet. 

There is many algorithms for fault tree setting (see Limnios (2007) for an extensive 

review). The most used algorithm is MOCUS (Fussel and Vesely, 1972), which has many 

modifications. It is also a top-down recursive algorithm as one of Liu and Chiou (1997). This 

algorithm proceeds as follows (Limnios, 2007): 

1. Initialize the first element of a matrix with the top event operator.  

2. The operator 𝐺𝑖(𝐴1, ⋯ , 𝐴𝑠) occupying the place (𝑖, 𝑗) of the matrix 𝐵𝑘 is to be 

resolved at the stage 𝑘.  

3. If it is an AND operator, replace it with its inputs in the row. The first input 

takes the place of the operator, and the subsequent inputs the places 

(𝑖, 𝑗 + 1), (𝑖, 𝑗 + 2), ⋯ , (𝑖, 𝑗 + 𝑠 − 1).  

4. If it is an OR operator, replace it with its inputs in the column. The first input 

takes the place of the operator, and the subsequent inputs the places 

(𝑖 + 1, 𝑗), (𝑖 + 2, 𝑗), ⋯ , (𝑖 + 𝑠, 𝑗).  Also, each element 𝑏𝑖,𝑚, 𝑚 = 1,2, ⋯ , 𝑠; 

𝑚 ≠ 𝑖, is repeated. The block matrices 𝐵1, 𝐵2 remain unaltered.  

5. If there is another operator in B, then continue as in 2. 
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2 Application to „Three-Motor“ System 

The three-motor system (Vesely et al., 1981) is a benchmark for the assessment of 

reliability methods. It is a real-life control system of the identical three motors in series wiring. 

A 60-second signal test is impressed to shut down the motors. The system is in failure if the 

electromagnetic force (EMF) is applied to any of the three motors for more than 60 seconds 

after the start of signal test. We refer to Vesely et al. (1981), p. 116 for more technical details 

of the system components. Fault tree and Petri Net of the system and finding all minimal sets 

by algorithm of Liu and Chiou (1997) was carried out for example in Vozár (2020).  

Any motor has 12 minimal cuts and 4 minimal paths. The minimal cut sets of the system 

are a union of the minimal cut sets of the three motors, because the system consists of the series 

system of three identical motors. For the same reason, the minimal path sets of the system are 

the Cartesian product of the minimal path sets of the three motors. The “three-motor” system 

has 3x12=36 minimal cuts and 43=64 minimal paths. For such complex system reliability 

function cannot be calculated analytically or guessed.  

Algorithms to find minimal cut sets and minimal path sets from Section 1.1 were applied 

to the “three-motor” system. The part of the algorithms to find matrix containing minimal sets 

requires the same number of operations in both cases. For the MOCUS algorithm, this part must 

be applied twice because it gives minimal cut sets/minimal paths in one run. In this part 

algorithm of Liu and Chiou algorithm is superior. The result by Liu and Chiou algorithm 

contains all path sets and cut sets. To find the minimal path sets is computationally demanding. 

The MOCUS algorithm provides a matrix containing in its rows minimal cut sets/minimal path 

sets. Redundant rows must be eliminated. There is no clear result which representation is better 

to find minimal sets. Performance of the bounds by (4), (5) and (6) is illustrated by example on 

the “three-motor” system on interval 0 ≤ t ≤ 300 hours. We assume the system with 

independent, identically exponentially distributed times to failure (MTTF=500 hours, 𝜆 =

1 500⁄ ). 

Trivial bounds fail for such a system with 𝑛 = 30 components. Lower bound is close to 

zero; the upper bound is one. Min-max bounds (see (5)) also fail, its lower bound is close to 

zero. The minimal sets bounds (see (4)) are the best for this example; but they cannot be further 

improved by a combination of the other bounds. The bounds do not provide exact reliability 

function, because the minimal sets are not 2-by-2 disjoint. The minimal bounds are quite broad, 

especially due to its lower bound. 

 



 

1402 
 

Fig. 1: Minimal sets bounds for the reliability of the “three-motor”  

 

Source: authors 

Conclusion  

The aim of the paper was to determine which setting of a system is more efficient to find its 

minimal sets reliability. The recursive top-down algorithm to find minimal sets for Petri Nets 

and the MOCUS algorithm for fault trees were analyzed by the example of the “three-motor” 

system (Vesely et al., 1981). This study showed no approach is better if both minimal path sets 

and minimal cut sets are required simultaneously. Furthermore, the numerical study of minimal 

sets bounds, “min-max” and trivial bounds showed, that minimal sets bounds are superior. They 

cannot be further improved by combining with other bounds. In future work, we focus on the 

assessment of more algorithms to find minimal sets. The three bounds will be analyzed by 

numerical studies in more detail. The tightness of minimal sets bounds will be compared with 

Bonferroni-type bounds using only minimal cut sets (Limnios 2007). 
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