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Abstract 

Robustness with respect to outliers in economic data belongs to one of key requirements 

expected from reliable statistical estimators. In the linear regression model, the least trimmed 

squares estimator has become a popular tool in econometric applications. Other highly robust 

estimators with a high breakdown point are also available, which however still far from being 

well known in the econometric community. These include the least trimmed absolute value 

estimator or least weighted squares estimator, which have been presented mainly on simulated 

datasets so far. In this paper, we propose a novel weighted version of the least trimmed absolute 

value estimator, which is denoted as the least weighted absolute value estimator. We study the 

performance of the novel estimator over an investment dataset. The computations include 

estimating the covariance matrix of the novel estimator by means of nonparametric bootstrap, 

or investigating computational aspects of a corresponding approximate algorithm. The novel 

least weighted absolute value estimator is more flexible compared to the least trimmed absolute 

value estimator. It is interesting to see that its performance over the dataset is similar to that of 

the least weighted squares, while statistical properties of the latter estimator are known to be 

very appealing. 

Key words:  robust regression, regression median, implicit weighting, computational aspects, 

nonparametric bootstrap 
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Introduction  

While linear regression represents the most fundamental model in current econometrics, the 

least squares (LS) estimator of its parameters is notoriously known to be vulnerable to the 

presence of outlying measurements (outliers) in the data. The class of M-estimators, thoroughly 

investigated since the groundbreaking work by Huber in 1960s, belongs to the classical robust 

estimation methodology (Jurečková et al., 2019). M-estimators are nevertheless not robust with 

respect to leverage points, which are defined as values outlying on the horizontal axis (i.e. 
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outlying in one or more regressors). The least trimmed squares estimator seems therefore a 

more suitable highly robust method, i.e. with a high breakdown point (Rousseeuw & Leroy, 

1987). Its version with weights implicitly assigned to individual observations, denoted as the 

least weighted squares estimator, was proposed and investigated in Víšek (2011). A trimmed 

estimator based on the 𝐿1-norm is available as the least trimmed absolute value estimator 

(Hawkins & Olive, 1999), which has not however acquired attention of practical 

econometricians. Moreover, to the best of our knowledge, its version with weights implicitly 

assigned to individual observations seems to be still lacking. 

Section 1 of this paper presents available implicitly weighted robust regression 

estimators and proposes a novel implicitly weighted estimator based on the 𝐿1-norm, denoted 

as the least weighted absolute value estimator. Section 2 describes an illustration of the novel 

estimator on a real economic dataset of U.S. investments, together with a comparison of other 

(possibly) highly robust estimates.  

 

1 Implicitly weighted robust regression 

This section recalls several available highly robust estimators of parameters in linear regression 

and proposes a novel implicitly weighted robust estimator, denoted as the least weighted 

absolute value estimator. We consider the standard linear regression model 

                                       𝑌𝑖 =  𝛽1𝑋𝑖1 + ⋯ +  𝛽𝑝𝑋𝑖𝑝 + 𝑒𝑖,        𝑖 = 1, … , 𝑛,                               (1) 

which may be expressed in the matrix notation as 𝑌 = 𝑋𝛽 + 𝑒. Here, 𝛽 = (𝛽1, … , 𝛽𝑝)𝑇 is the 

vector of parameters and the i-th row of X will be denoted as 𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑝)𝑇 for 𝑖 = 1, … , 𝑛. 

We assume that there exists a (positive) common variance  𝜎2 of the errors 𝑒1, … , 𝑒𝑛.            

The least trimmed squares (LTS) estimator of 𝛽 was proposed in Rousseeuw & Leroy 

(1987). If we consider a fixed estimate 𝑏 = (𝑏1, … , 𝑏𝑝)𝑇 ∊ ℝ𝑝, it will be useful to denote the 

residual corresponding to the i-th observation as  

                        𝑢𝑖(𝑏) =  𝑌𝑖 − 𝑏1𝑋𝑖1 − ⋯ − 𝑏𝑝𝑋𝑖𝑝,   𝑖 = 1, … , 𝑛.                                  (2) 

Ordering squared residuals as 

                                 𝑢(1)
2 (𝑏) ≤ 𝑢(2)

2 (𝑏) ≤ ⋯ ≤ 𝑢(𝑛)
2 (𝑏),                                             (3) 

we arrive at the definition of the LTS estimator in the form 

                                         arg min
𝑏∊ℝ𝑝

∑ 𝑢(𝑖)
2 (𝑏),ℎ

𝑖=1                                                     (4)  
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where the user must select a suitable trimming constant ℎ fulfilling 𝑛 2⁄ ≤ ℎ < 𝑛. Víšek (2006) 

proved that the LTS estimator may attain a high robustness (under contaminated data) but 

cannot achieve a high efficiency (under non-contaminated data). 

The least weighted squares (LWS) regression represents a generalization of the LTS 

(Víšek, 2011) with the ability to combine high robustness with high efficiency. Its idea is to 

downweight less reliable data points by a set of continuous weights; if the outliers get zero 

weights, then the estimator may attain a high breakdown point. The magnitudes of non-negative 

weights 𝑤1, … , 𝑤𝑛 must be chosen by the user, while the weights are assigned to particular 

observations after a permutation, which is determined automatically only during the 

computation based on the residuals. The LWS estimator of 𝛽 is defined as the argument of 

minimum of  

                                            arg min
𝑏∊ℝ𝑝

∑ 𝑤𝑖𝑢(𝑖)
2 (𝑏).𝑛

𝑖=1                                              (5)  

Clearly, the least trimmed squares (LTS) estimator proposed in Rousseeuw & Leroy (1987) 

represents a special case of the LWS with weights equal to zero or one only.  

The least trimmed absolute values (LTA) estimator is defined by means of 

                                            arg min
𝑏∊ℝ𝑝

∑ |𝑢(𝑏)|(𝑖),
ℎ
𝑖=1                                                (6) 

where  

                                |𝑢(𝑏)|(1)  ≤ |𝑢(𝑏)|(2)  ≤ ⋯ ≤ |𝑢(𝑏)|(𝑛),                                    (7) 

and represents a trimmed version of the regression median (𝐿1-estimator). Rusiecki (2013) 

presented the LTA estimator as a novelty in the context of robust neural networks (see e.g. 

Kalina & Vidnerová, 2019), although it has been described before (Wilcox, 2012). This 

documents how the LTA estimator remains very little known. In Wilcox (2017), a comparison 

of the LTA and LTS is claimed to be present in a recent paper, where the topic is not mentioned 

at all. Still, the LTA estimator is stated again in Wilcox (2017) to have a much smaller standard 

error (at least in common situations) compared to the LTS, but the improvement over the LTS 

is to be marginal at best.  

The LTA estimator is not sufficiently discussed in the most fundamental monographs 

on robust estimation (Jurečková et al., 2019) and we are also not aware of systematic numerical 

comparison of the LTA estimator with other robust estimates. Implicitly weighted estimators 

(Čížek, 2013; Kalina, 2014) were proposed and investigated only later than the LTA. Because 
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there is a recent promising experience with the LWS (see e.g. Kalina & Tichavský (2020)), it 

is now natural to generalize the LTA estimator by means of implicit weighting.  

We now propose a novel estimator denoted as the least weighted absolute value (LWA) 

estimator defined by 

                                         arg min
𝑏∊ℝ𝑝

∑ 𝑤𝑖|𝑢(𝑏)|(𝑖)
𝑛
𝑖=1 .                                             (8) 

Basically, it represents an implicitly weighted regression median. Alternatively, we may use 

the concept of weight functions according to Víšek (2011). Using a fixed weight function 

𝜓: [0,1] → [0,1], which is non-increasing and continuous on [0,1], we may express the LWA 

estimator in an equivalent way as 

                                          arg min
𝑏∊ℝ𝑝

∑ 𝜓 (
𝑖−1 2⁄

𝑛
)𝑛

𝑖=1 |𝑢(𝑏)|(𝑖).                                (9) 

The computation of the robust estimators of above (LTS, LWS, LTA, LWA), which 

may all be perceived as implicitly weighted estimators, is intensive and an approximate 

algorithm must be used already for relatively small sample sizes. An approximate algorithm 

based on repeated randomly chosen subsets of p observations (out of all n observations) is 

known for the LTS. This algorithm denoted as FAST-LTS is well-established (Rousseeuw & 

van Driessen, 2006) and implemented in the robustbase library of R software. We point out that 

the function ltsReg computes a two-stage reweighted version known as the reweighted least 

squares (RLS) (Rousseeuw & Leroy, 1987), which has never been theoretically investigated; in 

our computations here, we do not use reweighted versions of the estimators. We use 

a straightforward modification of the FAST-LTS algorithm to compute (estimate) also the 

LWA estimator. This algorithm requires the user to choose the magnitudes of the weights 

𝑤1, … , 𝑤𝑛 assigned to individual observations after that permutation, which minimizes (8). We 

use a modification of the FAST-LTS algorithm also for the LWS and LTA, while the 

computation of the latter estimator was investigated already in Hawkins & Olive (1999).  

 

2 Numerical analysis of investment data 

We analyze a real economic dataset of U.S. investments by means of several regression 

estimators to compare their performance and to study computational aspects of the novel LWA 

estimator. This investment dataset was analyzed in Kalina (2015) by standard regression tools. 

Here, we consider a regression of 𝑛 = 22 yearly values of real gross private domestic 
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investments in the United States in 109 USD against the gross domestic product. We use here 

R software for all the computations.  

Throughout this section, we choose ℎ = ⌊3𝑛 4⁄ ⌋ for the LTS and LTA estimators, where 

⌊𝑥⌋ denotes the integer part of 𝑥 ∊ ℝ. For the LWS and LWA estimators, we always use trimmed 

linear weights (Kalina & Tichavský, 2020), allowing to combine high efficiency and high 

robustness. While the algorithm for each of the robust estimators, obtained by adapting the 

FAST-LTS algorithm, is based on repeated randomly chosen p-subsets of the data, we always 

use 10 000 of these repetitions. 

Figure 1 shows the results of four robust regression estimators computed for the 

investment dataset, namely the LTS and LWS estimators (left image) and the LTA and LWA 

(right). Table 1 presents estimates of the intercept 𝑏0 and slope 𝑏1 for various regression 

estimators. Moreover, the mean square error (MSE) of each estimator evaluated in a leave-one-

out cross validation study is presented in the table. Both the LTS and LTA estimators consider 

the observations in the years 1998, 1999 and 2000 to be the most severe outliers, which is true 

also for the LWS and LWA. Point estimates, as well as values of MSE, obtained by the LWA 

are rather similar to those of the LWS. Point estimates of the LWS and LWA are (in spite of 

reducing the influence of several observations) also similar to those of the least squares. 

 

Fig. 1: Results of four robust regression estimators in the investment dataset of Section 2. 

Left: results of the LTS fit (triangles) and LWS fit (crosses). Right: results of the LTA fit 

(triangles) and LWA fit (crosses). 

 

Source: own computation 

 

2.1 Nonparametric bootstrap  
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The aim of this section is to apply bootstrap (bootstrapping, resampling with replacement) 

estimation techniques to estimate the variability of various implicitly weighted robust 

regression estimators, i.e. elements of the covariance matrix of the estimates. Let us first recall 

basic general principles of bootstrap estimation, which has acquired a big popularity in various 

statistical tasks. Incorporating the basic principles of bootstrapping, one may develop a great 

variety of resampling techniques that provide us with alternative possibilities of estimating such 

data characteristics, which would be infeasible by more standard reasoning, e.g. asymptotic 

results depending on the unknown distribution of regression errors in (1). The range of bootstrap 

methods is rather large, including residual bootstrap, nonparametric bootstrap, semiparametric 

bootstrap, Bayesian bootstrap etc. Also the terminology is not used in a unique way. Bootstrap 

is commonly used also in the task to estimate variability (i.e. the covariance matrix) of 

regression estimators. Theoretical foundations of bootstrap can be found e.g. in Godfrey (2009) 

and the references cited therein.  

In this paper, we focus our attention to nonparametric bootstrap, which is (especially in 

our model) conceptually simple and can be computed for real data in a straightforward 

(although rather computationally demanding) way. We use a standard nonparametric bootstrap 

approach and apply it to several robust regression estimators, including the novel LWA 

estimator, to assess the covariance matrix of every estimator in the example with investment 

data. In order to have comparable results, we compute the bootstrap estimates also for the least 

squares, although an explicit formula 𝑣𝑎𝑟 𝑏𝐿𝑆 =  𝜎2(𝑋𝑇𝑋)−1 for the least squares estimate 𝑏𝐿𝑆 

is available. The results are presented again in Table 1. Particularly, the standard deviation of 

all point estimates of the intercept is denoted as 𝑠0 there and for the slope as 𝑠1; the covariance 

between the slope and the intercept is denoted as 𝑠01. 

Bootstrap results reveal the results of the LWA to be similar to those of the LWS also 

by means of their variability. The computations over the investment dataset reveal that the 

smallest variance is obtained with the least squares estimator. This is natural, as the latter is 

based on minimizing the residual variance, but the LWA and LWS seem to stay behind only 

mildly. On the other hand, the loss of efficiency of the LTS and LTA is remarkable. Just like 

the LWS is superior to the LTS from the point of view of efficiency for non-contaminated 

samples, as theoretically proven in Čížek (2013), so the LWA seems to overcome a major 

disadvantage of the LTA, namely the low efficiency. The nonparametric bootstrap estimation 

allows us to perceive the LWA as promising, based however only on this empirical result, 

obtained for a simplistic data set with a single regressor. 
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Tab. 1: Results of the analysis of the investment dataset of Section 2. The classical and 

robust estimates of the intercept and slope are accompanied by nonparametric bootstrap 

estimates of standard deviances (𝒔𝟎 and 𝒔𝟏) and covariances (𝒔𝟎𝟏). MSE denotes the mean 

square error evaluated within a leave-one-out cross validation. 

Estimator Intercept Slope 𝑠0 𝑠1 𝑠01 MSE 

LS −582 0.239 108.9 0.016 −1.67 10 948 

LTS −375 0.207 742.0 0.106 −5.74 16 489  

LWS −601 0.242 207.2 0.031 −2.40 12 033  

LTA −312 0.204 721.6 0.112 −5.58 16 207 

LWA −551 0.232 224.8 0.030 −2.49 12 251 

Source: own computation 

 

Tab. 2: Values of five different loss functions computed for five estimators over the 

investment dataset. This study of Section 2.2 reveals the tightness of the algorithms for 

computing the individual robust regression estimators. 

 Loss function 

Estimator 
∑ 𝑢𝑖

2
𝑛

𝑖=1
 ∑ 𝑢(𝑖)

2
ℎ

𝑖=1
 ∑ 𝑤𝑖𝑢(𝑖)

2
𝑛

𝑖=1
 ∑ |𝑢|(𝑖)

ℎ

𝑖=1
 ∑ 𝑤𝑖|𝑢|(𝑖)

ℎ

𝑖=1
 

LS 198 796 80 834 4225 995 51.7 

LTS 245 484 61 298 4019 835 45.4 

LWS 223 132 63 661 3914 844 45.0 

LTA 247 037 62 597 4004 791 46.2 

LWA 220 925 64 076 3985 826 41.3 

Source: own computation 

 

The number of bootstrap repetitions within Algorithm 1 was always chosen as 100, 

which seems more than sufficient for the asymptotics. We additionally performed the 

computations for 10 000 bootstrap samples and compared the results, which turn out to be were 

very close to those obtained for 100 samples. This is in accordance with our experience and a 

small number of bootstrap samples indeed seems to be sufficient if a single constant is estimated 

rather than the whole empirical distribution. 

 

2.2 Computational aspects 
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We now investigate some computational aspects of the novel LWA estimator on the investment 

dataset. The computations of this section bring arguments in favor of using our approximate 

algorithm for the LWA estimator.  

Table 2 presents values of five loss functions, which correspond to the LS, LTS, LWS, 

LTA, and LWA, respectively. The loss functions are evaluated over the investment dataset (i.e. 

no cross validation is desirable here) and our choices of h and the weights are the same as above. 

Here, in contrary to previous computations, it is necessary to assume ∑ 𝑤𝑖 = 1𝑛
𝑖=1  for the LWS 

and LWA. 

Let us now comment the results presented in Table 2. The least squares estimator 

minimizes ∑ 𝑢𝑖
2𝑛

𝑖=1  as expected and thus can be expected to yield also a rather small value of 

∑ 𝑤𝑖|𝑢(𝑖)|.𝑛
𝑖=1  The LWA estimator has a much larger value of ∑ 𝑢𝑖

2𝑛
𝑖=1  compared to the LS fit. 

However, the algorithm used for computing the LWA has found even a much smaller value of 

∑ 𝑤𝑖|𝑢(𝑖)|𝑛
𝑖=1  than the LS. Analogous observations can be formulated for comparing the loss of 

the LWS and LWA, while each of the estimators minimizes its own specific loss function. On 

the whole, the results of Table 2 thus give a clear evidence in favor of the reliability of the 

algorithm for computing the novel LWA estimator. Such reasoning is analogous to the 

argument that the approximate algorithm for estimating the LWS yields a tight approximation 

(in a certain sense) to the precise value of the LWS; see  Víšek (2011) for discussion. 

Further, we discuss a suitable number of iterations within the computation of the LWA 

estimator. In the linear regression model (1), the minimal loss (5) obtained for the LWA 

regression with linear weights equals 3910.3. Figure 2 (left) shows the histogram of individual 

results of 1000 independent repetitions of the iterative computation; the LWA estimate is then 

the result corresponding to the minimal value of the loss. About 20 % of the resulting LWA 

estimates are highly influenced by outliers, so the loss is similar to that of the least squares, and 

the remaining about 80 % of the LWA estimates data have a remarkably smaller loss. Therefore, 

80 % of individual repetitions are already remarkably more robust than the least squares fit. 

Finally, we study the number of repetitions needed to obtain the minimal loss of the 

LWA estimator. The result of this study is shown in Figure 2 (right) for 1000 independent 

repetitions. In the mean there are 431 repetitions needed. The number of repetitions is below 

1000 for 85.7 % of cases. Therefore, using 1000 repetitions is sufficiently safe to yield a reliable 

approximation to the true solution of the LWA estimate here. 

 

Conclusions 
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While the LTS estimator belongs to popular robust regression estimators with many 

applications, its implicitly weighted analogue with continuous weights, i.e. the LWS estimator, 

has acquired much less attention in the analysis of econometric data. Nevertheless, available 

numerical studies reveal its ability to outperform the LTS estimator or even MM-estimators, 

which are currently considered to be the most successful robust estimators. Therefore, we 

extend the idea of implicit weighting to the context of the LTA estimator. The new estimator, 

denoted as the LWA estimator, is more flexible compared to the LTA, allowing also different 

weights than only zeros or ones. The LWA estimator can be interpreted as an implicitly 

weighted regression median (i.e. 𝐿1-estimator). We use here a (simple) investment dataset to 

study the performance of the LWA estimator and to investigate computational aspects of an 

approximate algorithm for its computation. The LWA estimator performs similarly to the LWS 

on this dataset, and particularly gives a better fit compared to the LTS and LTA estimators. 

As future work, additional computations are needed to investigate the application 

potential of the LWA (including data with a larger p, comparisons based on robust versions of 

MSE, or comparisons with other regression estimators). Theoretical properties of the novel 

estimator (i.e. asymptotic efficiency or robustness) remain unknown as well. In addition, we 

plan to develop a general approach to specifying suitable weights for a particular dataset,  

parametrizing the weight function by a small number of parameters and optimizing them.  
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