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ON ROBUSTNESS OF LOG-RANK TEST 

AND AN ASSUMPTION-FREE ALTERNATIVE 
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Abstract 

A situation of comparing two time-event survival curves is very common in applied statistics. 

Although the log-rank test is the first weapon of choice, it used to be limited by relatively 

rigorous statistical assumptions. Based on the context, there is a larger statistical toolbox used 

to exceed the efficiency of the log-rank test. However, each of its approaches has some 

limitations and violates statistical assumptions in different ways. In this work, we discuss 

selected issues of the robustness of the log-rank test. Furthermore, we also propose a bit 

different, assumption-free framework on how to model individual time-event survival curves 

that are depicted in a discrete combinatorial way as orthogonal paths in a grid of survival plot, 

which, besides others, enables by their counting up a direct estimation of the p-value using its 

original definition. Finally, using simulated time-event data, we check the robustness of both 

the log-rank test and the introduced method. Based on the simulations, the robustness of the 

log-rank test could be sometimes limited, while the sketched alternative seems to be promising 

on how to compare time-event curves regardless of any assumptions are met. 

Keywords: survival analysis, log-rank test, robust alternative, time-event survival curve, 

graphical surface analysis 

JEL code: C12, C14, C18 

 

Introduction 

Regardless of its name, survival analysis includes various events of possible interests, not only 

– historically spoken – statuses such as a death or disease of treated individuals. Distributions 

of time points when the event of the interest in each individual either does occur or does not, 

and if not, such a subject is so-called censored, is one of the things that makes survival 

calculations somewhat different from other common kinds of statistical analyses. 

Consequently, the target variable is two-dimensional, both the time of the event and whether 
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the event or the censoring occurred does matter. Intuitively, such a variable suggests being 

plotted in a plane (two-dimensional) chart; usually, a number of subjects not experiencing the 

event of interest to a number of all subjects is plotted on a vertical axis at a given time point 

while the horizontal axis stands for the time until the event of interest (or until the censoring) 

(see Fig. 1). This is how Kaplan-Meier estimator is usually illustrated (Kaplan and Meier, 

1958). Thus, the variable is represented as an orthogonal path (i. e., a polygonal path of 

horizontal and vertical segments) in the Cartesian two-dimensional chart. The variable deals 

both with the events and their times, it is commonly called the time-event survival curve. 

 

Fig. 1: Two time-event survival curves in a survival plot 

 

Source: authors’ own research 

 

When there are two time-event survival curves for two disjunctive groups of subjects 

supposed to be compared, a log-rank test could be used (Mantel, 1966). Under some special 

conditions, mainly when the data of the time-event survival curves are not censored, a simple 

Wilcoxon rank-sum test might be performed. If more than two groups are assumed to be 

compared, we can battle the problem using a score-rank test or even a Cox proportional hazards 

model (Li, 2015). All the methods mentioned above are easily available in both commercial 

and open-source software, including R language and environment (R Core Team, 2018), where 

they could be employed by using a pure R package stats or a package survival (Therneau, 

2020.) Although, the relatively tough statistical assumptions limit the previously mentioned 

methods. 
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Usage of the log-rank test comparing two non-crossing time-event survival curves 

(similar as in Fig 1.) is limited when the censoring affects the events or is not balanced in the 

compared groups. Various modifications increasing the efficiency of the log-rank test or its 

robustness against the assumptions' violation were reported. While Kong (1997) improved the 

log-rank test efficiency by adjusting the hazard functions, Song et al. (2008) inspected covariate 

matrix decomposition and proposed formulas estimating minimal sample sizes that legitimize 

usage of the log-rank test. Peto and Peto (1972), Yang and Prentice (2010), and Li (2018), 

respectively, introduced the use of observation weights, usually higher for earlier events when 

there are larger numbers of observations, to improve the correctness of the log-rank test. 

Other articles deal with exact computations when compare two survival curves. 

Whereas Thomas (1975) relied on fixed total numbers in the compared groups and Mehta et al. 

(1985) improved his algorithm computationally, Heinze et al. (2003) introduced a weighting 

scheme into the calculations. 

All the listed papers work with a hazard function, which is a rate of the events of interest 

in a given time point conditional on survival until the time point or assume fixed total numbers 

of individuals in the compared groups. Unlike them, in this contribution, besides theoretical 

discussion handling with limitations of the log-rank test, we model the time-event survival 

curves using a discrete combinatorial approach and taking into account the mutual grid 

distances of the time-event curves as orthogonal paths in a two-dimensional plot (as shown in 

Fig. 1 and Fig. 2). That indicates how the p-value of the log-rank test could be calculated using 

its original definition as a conditional probability. Finally, with the employment of simulations 

of artificially generated survival curves, the first type errors are calculated for both the log-rank 

test and our proposed alternative, mutually compared and discussed within the scope of their 

robustness. 

 

1 Logic, assumptions and limitations of the log-rank test 

By introduction of principles of the widely used log-rank test, we can better understand both its 

assumptions and limitations. 

 

1.1 Logic of the log-rank test 

The log-rank test compares the expected and observed numbers of the events of interest in both 

groups of subjects across all time points where there is an event. 
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Consider two groups of individuals (marked by indices 1, and 2, respectively) and 𝑘 ∈

ℕ distinct event times. At each event time, we can construct a 2 × 2 contingency table and 

compare the event rates between the two groups, conditional on the number at risk in the groups. 

Let the {𝑡1, 𝑡2, ⋯ , 𝑡𝑘} be an ordered tuple of the event times, then at the 𝑗-th event time 𝑡𝑗, we 

have the table Tab. 1, where 𝑑1,𝑗 and 𝑑2,𝑗 are the numbers of individuals who experienced the 

events in group 1 and 2, respectively, at the 𝑗-th event time, and 𝑟1,𝑗 and 𝑟2,𝑗 are the numbers of 

subjects at risk (who have not yet had the event or been censored) at that time in groups 1 and 

2, respectively. 

 

Tab. 1: Numbers of the events of interest in both groups of subjects at the event time 𝒕𝒋 

 event of interest at the event time 𝑡𝑗  

group yes no total 

1 𝑑1,𝑗 𝑟1,𝑗 − 𝑑1,𝑗 𝑟1,𝑗 

2 𝑑2,𝑗 𝑟2,𝑗 − 𝑑2,𝑗 𝑟2,𝑗 

total 𝑑𝑗 𝑟𝑗 − 𝑑𝑗 𝑟𝑗 

Source: authors’ own research 

 

The log-rank test checks the null hypothesis 𝐻0 that both groups have identical hazard 

functions. The values of the hazard functions are empirically estimated using the contingency 

tables similar to Tab 1. Under the null hypothesis 𝐻0, the observed numbers of the events as 

random variables 𝐷1,𝑗 and 𝐷2,𝑗 follow a hypergeometric distribution with parameters 

(𝑟𝑗 , 𝑟𝑖,𝑗, 𝑑𝑗) for both 𝑖 ∈ {1, 2}. Thus, the expected value of such a number is 

 
E(𝐷𝑖,𝑗) = 𝑟𝑖,𝑗

𝑑𝑗

𝑟𝑗
, (1) 

and the variance is 

 
var(𝐷𝑖,𝑗) =

𝑟1,𝑗𝑟2,𝑗𝑑𝑗

𝑟𝑗
2 (

𝑟𝑗 − 𝑑𝑗

𝑟𝑗 − 1
), (2) 

for both 𝑖 ∈ {1, 2}. For all 𝑗 ∈ {1, 2, ⋯ , 𝑘} we compare the observed numbers of events 𝑑𝑖,𝑗 to 

their expected values E(𝐷𝑖) = 𝑟𝑖,𝑗
𝑑𝑗

𝑟𝑗
 under 𝐻0. So, the test statistic for both 𝑖 ∈ {1, 2} is 

 

𝜒log-rank
2 =

(∑ 𝑑𝑖,𝑗 − E(𝐷𝑖,𝑗)𝑘
𝑗=1 )

2

∑ var(𝐷𝑖,𝑗)𝑘
𝑗=1

=
(∑ 𝑑𝑖,𝑗 − 𝑟𝑖,𝑗

𝑑𝑗

𝑟𝑗

𝑘
𝑗=1 )

2

∑
𝑟1,𝑗𝑟2,𝑗𝑑𝑗

𝑟𝑗
2 (

𝑟𝑗−𝑑𝑗

𝑟𝑗−1
)𝑘

𝑗=1

 (3) 
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and under 𝐻0 follows a 𝜒2 distribution with 1 degree of freedom, thus 𝜒log-rank
2 ~𝜒2(1). For 

feasible large 𝑟𝑗, a square root of 𝜒log-rank
2  follows a standard normal distribution, 

√𝜒log-rank
2 ~𝑁(0,1).  

 

1.2 Assumptions and limitations of the log-rank test 

Besides the assumption that censoring should not affect the event of interest anyhow, the 

proportion of censored data should be of nearly equal size in both the groups. Otherwise, the 

statistic 𝜒log-rank
2  calculated using (3) separately for 𝑖 = 1, and for 𝑖 = 2, respectively, could 

differ. That may affect the robustness of the log-rank test. 

There is also a statistical assumption based on that the test statistic 𝜒log-rank
2  follows 

a 𝜒2 distribution. If the initial total number of individuals 𝑟0 and the number of all event times 

𝑘 is relatively small, than both the numerator and denominator of the fraction in the formula (3) 

is relatively small, too, and, consequently, we could expect that the 𝜒log-rank
2  statistic (or the 

√𝜒log-rank
2 . statistic) does not fulfill its supposed asymptotic properties, and its estimate could be 

biased. That influences both the robustness and the power of the log-rank test. 

It is worth mentioning that by inspecting the denominator of the equation (3), we can 

realize the 𝜒log-rank
2  is the highest when the denominator ∑ var(𝐷𝑖,𝑗)𝑘

𝑗=1  is as low as possible. It 

could be proved this holds exactly when the proportions 
𝑟1,𝑗

𝑟𝑗
=

𝑟1,𝑗

𝑟1,𝑗+𝑟2,𝑗
 and 

𝑟2,𝑗

𝑟𝑗
=

𝑟2,𝑗

𝑟1,𝑗+𝑟2,𝑗
 are 

both constant (and mutually different enough) across all the time points 𝑗 ∈ {1, 2, ⋯ , 𝑘}, and 

then the log-rank test is the most powerful (i. e. its ability to reject the null hypothesis 𝐻0 when 

it is not true is maximal possible). This is the main issue that impacts on the power of the log-

rank test. The proportions are typically not constant when the time-event survival curves cross 

themselves one or more times. However, the power of the test is decreased by any deviations 

from the constant values of the proportion 
𝑟1,𝑗

𝑟𝑗
, and 

𝑟2,𝑗

𝑟𝑗
, respectively. 

 

2 An assumption-free alternative to the log-rank test 

We propose an assumption-free alternative to the log-rank test based on a discrete combinatorial 

calculation of possible states where one would obtain data at least as extreme as the observed 

data, which corresponds to the original definition of the p-value. All the possible states could 

be considered as orthogonal paths in the two-dimensional chart, including the (non-crossing) 
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survival curves. By calculating (or estimating) the numbers of the paths at least at extreme as 

the plotted two curves, we get a point estimate of the p-value as a proportion of paths 

contradicting the same way or even more to the observed survival curves. 

Again, let us suppose there are two groups of individuals (marked by indices 1, and 2, 

respectively) and 𝑘 ∈ ℕ distinct event times. Let the {𝑡1, 𝑡2, ⋯ , 𝑡𝑘} be an ordered tuple of the 

event times. At each event time  𝑡𝑗, we can compute the number of individuals experienced the 

event for both groups, similarly to the contingency tables as Tab 1. By doing this, consequently, 

once we get the proportions of subjects at risk, 
𝑟1,𝑗

𝑟𝑗
, and 

𝑟2,𝑗

𝑟𝑗
, respectively, for each event time 𝑡𝑗, 

we could plot the time-event survival curves similarly to Fig. 1. 

 

Fig. 2: Two time-event survival curves in a survival plot (bold lines) and examples of 

monotonic orthogonal paths above (blue dashed line) and below (red dashed line) the 

original survival curves 

 

Source: authors’ own research 

 

For simplicity, let us assume that the survival curves do not cross themselves. By adding 

a grid into the Fig. 1, we get Fig. 2, which straightforwardly suggests to calculating (or 

estimating) a number of monotonic paths starting at the proportion of subjects at risk 
𝑟1,0

𝑟0
=

𝑟2,0

𝑟0
= 1 and ending – after 𝑘 event times – at the proportion of subjects at risk ≥

𝑟1,𝑘

𝑟𝑘
 (one of 

such paths is the blue line in Fig. 2) or ≤
𝑟2,𝑘

𝑟𝑘
 (one of such paths is the red line in Fig. 2). 
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Let 𝑁𝑘,𝑢.𝑣 stands for the number of all monotonic orthogonal paths (respecting the grid, 

i. e. all segments of such a path are parallel to horizontal or vertical lines of the grid and its 

edges are aligned to grid points) starting at the proportion 1 (left upper corner of the Fig. 2) and 

ending after 𝑘 event times at the proportion of subjects at risk 
𝑢

𝑣
 (a point with coordinates [𝑘,

𝑢

𝑣
] 

in Fig. 2). Eventually, let 𝑁𝑖,𝑘,𝑢.𝑣
+  (or 𝑁𝑖,𝑘,𝑢.𝑣

− ) be a number of all orthogonal paths starting at the 

proportion 1, going above (or below) the 𝑖–th survival curve or tangentially meeting it (without 

crossing it) and ending at the proportion of subjects at risk ≥
𝑢

𝑣
 (or ≤

𝑢

𝑣
) after 𝑘 event times. The 

numbers 𝑁𝑖,𝑘,𝑢.𝑣
+  and 𝑁𝑖,𝑘,𝑢.𝑣

−  could be computed exhaustively in a combinatorial way or 

estimated by numerical simulations. 

Let us test a null hypothesis 𝐻0 that the survival curves are not significantly different. 

The tricky part is that, since we do not need any assumptions for this testing, we do not require 

modeling a null distribution. The p-value is the probability of obtaining data at least as extreme 

as the data currently observed, assuming that the null hypothesis is correct. To be more specific, 

let the p-value mark as 𝑝, then 

 𝑝 = p-value 

𝑝 = 𝑃(obtaining data at least as extreme as the observed data|𝐻0) 

𝑝 = 𝑃 (
𝑁1,𝑘,𝑟1,𝑘.𝑟𝑘

+ ∙ 𝑁2,𝑘,𝑟2,𝑘.𝑟𝑘

−

(∑ 𝑁𝑘,𝑗.𝑟𝑘

𝑟𝑘
𝑗=0 )

2

− 𝑁crossing curves

), 

 

 

(4) 

where 𝑁crossing curves is a number of pairs of such survival curves in the survival plot that cross 

themselves. Again, the number 𝑁crossing curves can be calculated either using a combinatorial 

approach, or be numerically simulated. 

 

3 A simulation study 

We compared the robustness of the log-rank test and the proposed assumption-free method by 

simulating pairs of random non-crossing curves that are not significantly different and 

calculating the first type errors, supposing that a more robust method should have less value of 

the first type error. Firstly, we generated pairs of survival curves such that both curves in the 

pair follow one generated negatively exponential survival function following the form 

 𝑠(𝑡) = 𝜎 (𝑒−
10+𝜀

10000
𝑡) (5) 

where 𝜀 is a random noise term and follows a standard normal distribution, i. e. 𝜀~𝑁(0,1) and 

𝜎(∙) is a function rounding its argument to the nearest integer. Applying the formula (5), we 
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generated 𝑛 = 1000 pairs of significantly not different survival curves and compared them 

using both the log rank test, and the above proposed method. By counting up numbers of cases 

where p-value was lower than or equal to 0.05, we got the point estimates of the first type error 

frequencies, as demonstrated in table Tab. 2. 

 

Tab. 2: Point estimates of the first type error rates for the log-rank test and the proposed 

method 

 method 

 the log-rank test the proposed method 

# of simulated cases in total 1000 1000 

# of cases when p-value ≤ 0.05 56 12 

point estimate of the first type error rate 0.056 0.012 

Source: authors’ own research 

 

The point estimate of the first type error rate for the log-rank test is about 0.056, which 

is controlled by the common setting of the alpha level equaled to 0.050. On the other hand, the 

point estimate of the first type error rate for the method introduced above is about 0.012, 

therefore lower than the one for the log-rank test. The proposed method seems to be more robust 

than the log-rank test. 

 

Conclusion 

We have discussed some of the issues that may affect the robustness (and statistical power) of 

the log-rank test. The log-rank test is considered to be nonparametric, but still is limited by 

a quality of the used data (following the principle “garbage in, garbage out”); whenever the 

censoring might influence the event of interest, or the censoring rates are not balanced across 

the groups of individuals, the robustness of the statistical power of the log-rank test may be 

affected. Similar to other common tests of statistical inference, the output of the log-rank test 

may be biased by both the first or second type errors. 

The introduced method uses an original definition of the p-value as a conditional 

probability of getting data at least as extreme as the observed data, assuming the null hypothesis 

is correct. By combinatorial or exhaustive calculation of orthogonal paths in the grid of survival 

plot, we can get a ratio of the number of all pairs of the paths corresponding to the survival 

curves opposing the null hypothesis and the number of all non-crossing pairs of possible paths. 
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Based on the simulation of the first type error rates, the proposed method proved to be 

of higher robustness than the log-rank test, which is in accordance with our prior expectations. 

The assumption-free version of the log-rank test seems to be a valid alternative for the 

comparison of two time-event curves. Besides, the method and theory behind it could also be a 

topic for a new R package development. 
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