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Pólyas´s Theorems on Random Walks. The Precise Role of 

Generating Functions in their Proofs 

Richard Horský   

 

Abstract 

One hundred years have passed since the Hungarian mathematician George (György) Pólya 

published the fundamental work concerning to the problem of random walk (Pólya, 1921). 

The theorems of George Pólya on random walks have become a popular topic of the 

probability theory. They were inspiration for many other results in a lot of branches of 

science. Here we concentrate on the core of wanderer´s problem which is of enumerative 

character. Our interest is in a somewhat technical matter, the precise role of generating 

functions and power series in the proofs of the enumerative core of Pólya´s theorems. In some 

contribution to this topic we can meet the opinion that the classical theorem of N. H. Abel is 

necessary and by this way the Pólya´s theorems may be considered as its corollary. We will 

see that the Pólya´s theorems are corollaries of an easier result on power series which employs 

the strong property of non-negativity of the coefficients of the power series.  
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Introduction  

This year as was mentioned marks the centenary of the publication of the fundamental article 

(Pólya, 1921) which was the start for new research in the area of stochastic processes. Let us 

describe the problem in free form and later in chapter 1 precisely in mathematical terms. A 

man aimlessly and randomly wanders in a rectangular net of streets. We can ask the question: 

how likely is it that he returns to the starting point of his trip? One may model the net of 

streets and crossroads with a suitable unoriented graph, for instance the graph 𝐺 = (ℤ𝑑 , 𝐸), 

where 𝑑 = 2.We can consider other situations with random walk in this graph with another 

value of the parameter d. G. Pólya found the surprising dependence on the integer parameter 

d: for 𝑑 = 1 or 𝑑 = 2 the wanderer returns to the starting point of his walk with the 
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probability one, but in the dimensions 𝑑 ≥ 3 with a positive probability he never returns to 

the start. The following contribution is about the precise role of the generating functions and 

the power series in the proof of the Pólya´s theorems. It means that we concentrate on a 

somewhat technical matter, the core of wanderer´s problem which is rather of enumerative 

character than probabilistic one as it consists in counting walks in the graph. We have to 

emphasize that this contribution is based on (W. Feller´s classics, 1968). Other references are 

(Billingsley, 1995), (Y. Kochetkov 2018), (K. Lange 2015), (D. A. Levin and Y. Peres, 2010), 

(J. Novak 2014), (K. Rogers, 2017) and (W. Woess, 2000). The list could be much extended.  

 

1 The basic notions and denotations 

As was mentioned in the introduction we will consider the graph 𝐺 = (ℤ𝑑, 𝐸). The symbol ℤ 

denotes as usually the set of all integers, i.e. the set ℤ𝑑  (the set of vertices of G) is the d-th 

cartesian power of the set ℤ, in other words the set of all d-tuples of all integers. Finally the 

set E (the set of edges of the graph G) is created by the unordered pairs {𝑢, 𝑣},  where 𝑢 =

(𝛼1, … , 𝛼𝑑), 𝑣 = (𝛽1, … , 𝛽𝑑) ∈ ℤ𝑑 for which  

∑ |𝛼𝑖 − 𝛽𝑖| = 1
𝑑

𝑖=1
. 

It means that {𝑢, 𝑣} ∈ 𝐸 if and only if  

𝑢 − 𝑣 ∈ {(±1,0, … ,0), (0, ±1,0, … ,0), … , (0, … ,0, ±1)}. 

Thus one can go from u to v and back by a unit step in the direction of one of the d coordinate 

axes. 

 The considered graph G has two important properties: it is 2d-regular (each vertex has 

the same 2d neighbors) and is vertex-transitive (for every pair of vertices u, v there is an 

automorphism 𝑓: 𝐺 → 𝐺, for which 𝑓(𝑢) = 𝑣). These properties of G are important as we can 

see in what follows. 

For any vertex 𝑢 ∈ ℤ𝑑  and a number 𝑛 ∈ ℕ0 we denote by  

𝑑𝑛 = 𝑑𝑛(𝑢) ∈ ℕ0, resp. 𝑙𝑛 = 𝑙𝑛(𝑢) ∈ ℕ0,   (1) 

the number of all walks 𝑊 = (𝑢0, 𝑢1, … , 𝑢𝑛) in G starting at the point (vertex) 𝑢0 = 𝑢 and 

with length 𝑛 ∈ ℕ0 (certainly {𝑢𝑖−1, 𝑢𝑖} ∈ 𝐸 for 𝑖 = 1, … , 𝑛 ), resp. the number of those 

walks that revisit the starting point: 𝑢0 = 𝑢 = 𝑢𝑗 for some 𝑗 = 1, … , 𝑛. Now for any two 

vertices u, v and for any 𝑛 ∈ ℕ0  
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𝑑𝑛 = 𝑑𝑛(𝑢) = 𝑑𝑛(𝑣), resp. 𝑙𝑛 = 𝑙𝑛(𝑢) = 𝑙𝑛(𝑣), 

which means that the choice of the starting vertex is irrelevant. The former equality follows 

from the 2d-regularity of the graph G while the latter one requires the vertex-transitivity. 

However, it is satisfied thanks to automorphism (just shift) 𝑓(𝑥) = 𝑥 + 𝑣 − 𝑢. In the proofs 

of Pólya´s theorems we will suppose the starting point for a random walk is the origin of the 

set ℤ𝑑, i.e. the vertex 𝑜 = (0,0, … ,0). 

 

2 The generating functions, classical Abel´s theorem and the power 

series with non-negative coefficients 

The concepts of the generating functions and power series are old, classical but all the time 

interesting and fruitful. Even if the notion of generating function belongs originally to algebra 

there is a wide range of its use in other branches as for instance in special forms such as 

probability generating function or moment generating function (P. J. Dhrymes, 1985). The 

goal of this contribution as was mentioned is to explain the use of the theory of power series 

in the proofs of Pólya´s theorems on random walk. That is why we remind two results that are 

important to carry out our purpose. 

 The articles (Novak 2014) or Rogers (2017) invoke the classical Abel´s theorem. This 

theorem dates to 1826: 

 

If a power series 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛 ∞
𝑛=0 , with complex coefficients 𝑎𝑛 converges for |𝑧| < 1 and 

if the series ∑ 𝑎𝑛 ∞
𝑛=0 converges to a sum 𝑠 ∈ ℂ (the domain of all complex numbers) then 

lim
𝑥→1−

𝑓(𝑥) = 𝑠, where the limit is taken along the real line from the left to 1. 

 

Of course the general power series may have another radius of convergence, say 0 <

𝑅 < ∞ and the center of the circle of its convergence need not be the origin, but simple linear 

transformation enables us to consider the center at the origin and the radius equal to 1. 

Let us introduce another claim about the generating functions (power series): 

 

Proposition GFNC (on generating function with non-negative coefficients). 

If a power series  

𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛,   𝑥 ∈ ℝ∞
𝑛=0    (2) 
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has non-negative coefficients and converges for any 𝑥 ∈ [0; 1), then the following equality 

holds 

lim
𝑥→1−

𝑓(𝑥) = ∑ 𝑎𝑛 ∞
𝑛=0     (3) 

no matter whether the limit and the sum are finite or infinite. 

We can observe again the strong property of the non-negativity (of the coefficients) 

which implies the monotonicity (of the partial sums). These properties guarantee the existence 

both  limit and infinite sum. Particularly, for arbitrary 𝑁 ∈ ℕ and 𝑥 ∈ [0; 1) we have  

∑ 𝑎𝑛 = lim
𝑥→1−

∑ 𝑎𝑛𝑥𝑛 𝑁
𝑛=0 ≤ lim

𝑥→1−
∑ 𝑎𝑛𝑥𝑛 ∞

𝑛=0 ≤ ∑ 𝑎𝑛 ∞
𝑛=0

𝑁
𝑛=0   

and we send 𝑁 → ∞ on the left hand side to obtain (3). 

 Even if this Proposition is not the classical Abel´s theorem it can be interpreted as its 

special case for power series with non-negative coefficients. 

 

3 The Pólya´s theorems on random walks and their proofs 

In this chapter we give the precise formulation and proofs of well-known Pólya´s theorems on 

random walks from which the role of power series (generating functions) in this context will 

be seen. For brevity we restrict only on the cases 𝑑 = 2 and 𝑑 = 3. 

 

3.1 Wandering in 2 dimensions 

Theorem 1. Take the origin as the initial vertex in 𝐺 = (ℤ2, 𝐸). Then  

lim
𝑛→∞

𝑙𝑛(𝑜)

𝑑𝑛(𝑜)
= lim

𝑛→∞

𝑙𝑛

𝑑𝑛
= lim

𝑛→∞

𝑙𝑛

4𝑛 = 1.   (4) 

Metaphorically speaking, a random walk in 𝐺 = (ℤ2, 𝐸) returns to the starting point with 

probability 1. 

Proof. The symbols in (4) have the meaning from (1). Let 𝑊 = (𝑢0, 𝑢1, … , 𝑢𝑛) be a walk in G 

of the length 𝑛 ∈ ℕ0. Let 𝑏𝑛 be the number of all walks W with 𝑢0 = 𝑢𝑛 = 𝑜 and 𝑐𝑛 be the 

number of those walks with 𝑢0 = 𝑢𝑛 = 𝑜 for which 𝑢𝑗 ≠ 𝑜 for any 0 < 𝑗 < 𝑛. For 

completness we set 𝑐0 = 0. These numbers are not dependent on the starting point because of 

the vertex transitivity of the graph G. The following inequalities are clear: 𝑙𝑛 ≤ 𝑑𝑛, 𝑐𝑛 ≤
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𝑏𝑛 ≤ 𝑑𝑛 and  𝑑𝑛 = 4𝑛 for any 𝑛 ∈ ℕ0. If we compartmentalize the walks counted by 𝑙𝑛 by 

their first return to o at the step j and using the fact that 𝑙𝑛 ≤ 𝑑𝑛 = 4𝑛 we get for any 𝑛 ∈ ℕ0 

the relations 

𝑙𝑛 = ∑ 𝑐𝑗𝑑𝑛−𝑗,   𝑛
𝑗=0 and so     

𝑙𝑛

4𝑛 = ∑
𝑐𝑗

4𝑗
𝑛
𝑗=0 ≤ 1. 

Therefore it suffices to prove the summation 

∑
𝑐𝑗

4𝑗
∞
𝑗=0 = 1.        (5) 

Now we pay attention to the generating functions 

𝐵(𝑥) = ∑
𝑏𝑛

4𝑛
∞
𝑛=0 𝑥𝑛   and     𝐶(𝑥) = ∑

𝑐𝑛

4𝑛 𝑥𝑛∞
𝑛=0 .   (6) 

It holds that 

𝐵(𝑥) =
1

1−𝐶(𝑥)
= ∑ (𝐶(𝑥))

𝑘
.∞

𝑘=0      (7) 

It can be seen formally as a relation between formal power series by a splitting a walk counted 

by 𝑏𝑛 in its 𝑘 + 1 returns to o into k segments of lengths 𝑗1, 𝑗2, … , 𝑗𝑘, 𝑗1 + 𝑗2 + ⋯ + 𝑗𝑘 = 𝑛 

counted by 𝑐𝑗1
, 𝑐𝑗2

, … , 𝑐𝑗𝑘
. However the both series in (6) have the radius of convergence at 

least 1 and hence the generating functions (6) are the real functions defined certainly for 𝑥 ∈

[0; 1).  

To show that (5) holds it suffices to prove with respect to (7) that  

lim
𝑥→1−

𝐵(𝑥) = +∞.   (8) 

Indeed, then we will have lim
𝑥→1−

𝐶(𝑥) = 1 and by the Proposition GFNC, see (3), that 

∑
𝑐𝑗

4𝑗
∞
𝑗=0 =: 𝐶(1) = lim

𝑥→1−
𝐶(𝑥) = 1.  

To prove (8) we use again the Proposition GFNC and that is why we prove that             

𝐵(1): = ∑
𝑏𝑗

4𝑗
∞
𝑗=0 = +∞. We do it by computing 𝑏𝑛. It is obvious that 𝑏2𝑛+1 = 0. For even 

lengths, 

𝑏2𝑛 = ∑
(2𝑛)!

𝑗!𝑗!(𝑛−𝑗)!(𝑛−𝑗)!

𝑛
𝑗=0 = (

2𝑛
𝑛

) ∑ (
𝑛
𝑗 )

2

= (
2𝑛
𝑛

)
2

.𝑛
𝑗=0   
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The first equality follows by considering all positions of j steps of W to the right, which force 

the same number j of steps to the left and the same number n-j for steps up and down. The 

possibilities are counted by the multinomial coefficient (
2𝑛

𝑗, 𝑗, 𝑛 − 𝑗, 𝑛 − 𝑗
). The last equality 

follows from the well-known binomial identity ∑ (
𝑛
𝑗 )

2

= (
2𝑛
𝑛

) .𝑛
𝑗=0  The Stirling´s formula 

yields the asymptotics (
2𝑛
𝑛

) ~𝑐
4𝑛

√𝑛
 for 𝑛 → ∞ and a constant c. Hence we have 

𝑏2𝑛

42𝑛
~𝑐2 1

𝑛
 which implies 

lim
𝑥→1−

𝐵(𝑥) = 𝐵(1) = ∑
𝑏𝑛

4𝑛
∞
𝑛=0 = ∑ (

2𝑛
𝑛

)
2

∞
𝑛=0 4−2𝑛 = +∞  

for the harmonic series is divergent as is well-known. 

 

3.2 Wandering in 3 dimensions 

Theorem 2. We start wandering at the origin 𝑜 = (0,0,0) in 𝐺 = (ℤ3, 𝐸). Then  

lim
𝑛→∞

𝑙𝑛(𝑜)

𝑑𝑛(𝑜)
= lim

𝑛→∞

𝑙𝑛

𝑑𝑛
= lim

𝑛→∞

𝑙𝑛

6𝑛 < 1.   (9) 

Metaphorically speaking, a random walk in 𝐺 = (ℤ3, 𝐸) returns to the starting point with 

probability less than 1 and it disappears in infinity without return with a positive probability. 

Proof. The symbols in this proof are defined by the same way as in the proof of Theorem 1 

with the only difference that everywhere 4 is replaced by 6. For instance the form of 

generating functions in (6) is now 𝐵(𝑥) = ∑
𝑏𝑛

6𝑛
∞
𝑛=0 𝑥𝑛   and     𝐶(𝑥) = ∑

𝑐𝑛

6𝑛 𝑥𝑛∞
𝑛=0 . The 

essential difference now is that 𝐵(1): = ∑
𝑏𝑗

6𝑗
∞
𝑗=0 < +∞, i.e. the series converges. The reason 

to show the convergence of this series is that the relation (7) holds (whatever we set for d),  

𝐵(1) = lim
𝑥→1−

𝐵(𝑥), 𝐶(1) = lim
𝑥→1−

𝐶(𝑥)  again by the Proposition GFNC and as soon as we 

obtain 𝐵(1) = lim
𝑥→1−

𝐵(𝑥) < +∞, we will have  

lim
𝑥→1−

𝐶(𝑥) = 𝐶(1) = ∑
𝑐𝑗

6𝑗
∞
𝑗=0 = lim

𝑛→∞

𝑙𝑛

6𝑛
< 1.  

 So come on to prove that the series ∑
𝑏𝑛

6𝑛
∞
𝑛=0  converges. We have again for odd n that 

𝑏𝑛 = 0. We find an upper bound for the fraction 
𝑏2𝑛

62𝑛. The following relations are right 
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𝑏2𝑛

6𝑛 =
1

62𝑛
∑

(2𝑛)!

𝑗!𝑗!𝑘!𝑘!(𝑛−𝑗−𝑘)!(𝑛−𝑗−𝑘)!
𝑗+𝑘≤𝑛
𝑗,𝑘∈ℕ0

= 

= (
2𝑛
𝑛

) 4−𝑛 ∑ (3−𝑛
(

𝑛
𝑗, 𝑘, 𝑛 − 𝑗 − 𝑘))

2

≤𝑗+𝑘≤𝑛
𝑗,𝑘∈ℕ0

  

≤ (
2𝑛
𝑛

) 4−𝑛 max
𝑥,𝑦,𝑧∈ℕ0

𝑥+𝑦+𝑧=𝑛

3−𝑛 (
𝑛

𝑥, 𝑦, 𝑧) =   

= (
2𝑛
𝑛

) 12−𝑛 (
𝑛

𝑥0, 𝑦0, 𝑧0
),  (10) 

where (𝑥0, 𝑦0, 𝑧0) = {

(𝑚, 𝑚, 𝑚), 𝑛 = 3𝑚
(𝑚 + 1, 𝑚, 𝑚), 𝑛 = 3𝑚 + 1

(𝑚 + 1, 𝑚 + 1, 𝑚), 𝑛 = 3𝑚 + 2
, 𝑚 ∈ ℕ0.  

On the first line in (10) we counted as in the proof of Theorem 1, j is the number of steps in 

the walk to the right, k the number of steps up, and 𝑛 − 𝑗 − 𝑘 the number of steps back. The 

second line is an algebraic rearrangement. On the third line we used the fact that if 

𝛼1, 𝛼2, … , 𝛼𝑝 are non-negative real numbers satisfying ∑ 𝛼𝑖 = 1,𝑝
𝑖=1  then ∑ 𝛼𝑖

2 ≤ max
1≤𝑖≤𝑝

𝛼𝑖
𝑝
𝑖=1 . 

We intend to estimate the third term and we set 𝛼𝑖 = 3−𝑛 (
𝑛

𝑗, 𝑘, 𝑛 − 𝑘) and 3𝑛 =

(1 + 1 + 1)𝑛 = ∑ (
𝑛

𝑗, 𝑘, 𝑛 − 𝑗 − 𝑘)𝑗+𝑘≤𝑛
𝑗,𝑘∈ℕ0

. On the fourth line we found the maximum value of 

the trinomial coefficients using the inequality 𝑝! 𝑞! > (𝑝 − 1)! (𝑞 + 1)! for 𝑝 ≥ 𝑞 + 2. 

 By the Stirling´s formula for the factorial we have estimates with constants K, L 

(
2𝑛
𝑛

) < 𝐾
4𝑛

√𝑛
 , (

𝑛
𝑥0, 𝑦0, 𝑧0

) < 𝐿
3𝑛

𝑛
 .  

Using these estimates on (10) we obtain 

𝑏2𝑛

6𝑛 < 𝐾
1

√𝑛
𝐿

1

𝑛
= 𝐶𝑛−

3

2 .  

Finally we come to the convergence of the series ∑
𝑏𝑛

6𝑛 ∞
𝑛=0 , since 

𝐵(1) = ∑
𝑏𝑛

6𝑛 = ∑
𝑏2𝑛

62𝑛  < 𝐶 ∑
1

𝑛
3

2⁄
< +∞ ∞

𝑛=1
∞
𝑛=0  .∞

𝑛=0   
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Conclusion 

The Pólya´s theorems celebrate the centenary. They are considered as the origin of very 

interesting area of mathematics which have important applications in other sciences 

(Alemany, 1997, Dias, 2020). During this time they inspired many mathematicians to further 

development in this field. 

 Nowadays there are several ways how to prove these theorems. Here is presented a 

pure combinatorial enumeration accompanied by generating functions, Stirling´s formula and 

Riemann zeta function. In this contribution the precise role of generating function is shown. 

The main goal was to emphasize that only weak form of Abel´s theorem (Proposition GFNC) 

is sufficient in the proofs. We can see again the great power of the non-negativity which is 

essential for the existence of the limits and sums of the given sequences and series.  

The Pólya´s theorems discovered another interesting dependence of certain quality on 

the dimension similarly as it is in the case of the number domains (real, complex numbers and 

quaternions) or the expression of the roots of polynomial in radicals (Abel-Ruffini theorem) 

and others.  
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