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Abstract 

There are problems in statistics that require solving an inequality that contains both sample 

size as an unknown variable and Student t-quantile that is dependent on the sample size. The 

dependency between the sample size and Student t-quantile is a function that cannot be 

expressed in any implicit form, and, thus, solving the given inequality, i. e. finding a minimal 

existing sample size that the inequality holds for, is tricky. Since the only acceptable solutions 

are natural numbers, those inequalities typical for statistical problems are of Diophantine 

kind. In this study, we define a general form of inequality for selected problems, discuss 

general solutions to such a form of inequalities, and suggest some simple numerical 

approaches to solving the inequalities, particularly using numerical algorithms and tabulation. 

Besides others, we also compare the estimates using standard normal quantiles and Student t-

quantiles, which are usually more appropriate, to show differences between them. 

Keywords: Student t-quantiles, standard normal quantiles, numerically-only solvable 

inequalities, Diophantine inequalities, tabulation of sample size-adjusted quantiles 
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Introduction 

In a wide variety of numerical problems in statistics, there are also those, usually called 

Diophantine problems, that natural numbers or integers are their only acceptable solutions 

(Brüdern & Dietmann, 2012). 

As a typical example, one of the statistical problems’ classes, when a natural number’s 

solution is expected, is a minimum required sample size that ensures a confidence interval 

width of a selected estimate, calculated using the sample’s values, is less than or equal to 
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a given constant. Supposing all hyperparameters of such a problem, besides the constant 

maximal (half)width of the estimate’s confidence interval, are given, i. e. particularly 

a confidence level, then a goal is to find the minimal natural number so that the width of the 

confidence interval for the given estimate is not greater than the constant. Usually, under 

common (asymptotic) assumptions typical for the frequentist statistics such as the limit 

theorems (Skorokhod, 1956), we may assume the prior distribution of the point estimate 

follows normal or Student t-distribution (Lange et al, 1989). Thus, there are standard normal 

quantiles or Student t-quantiles usually presented in inequalities for the estimates’ confidence 

intervals. However, whereas the standard normal quantiles are constant for a given confidence 

level, the Student t-quantiles depend not only on the confidence level but also on the sample 

size (Martin, 2012). That being said, there are both the sample size and the Student t-quantile 

(when used instead of the standard normal quantile) in one given inequality considered to 

solve the problem. Since the function describing the dependence of the Student t-quantile on 

the sample size cannot be expressed in an implicit form (Ng, 1988), solutions of such 

inequalities can be computed numerically only (Ohara & Sasaki, 2001). That may also 

increase the solutions’ difficulty of the mentioned class of Diophantine inequalities in 

statistics; however, it opens room for non-routine approaches of the solutions (Baker, 1986). 

Similarly, another class of problems that might be solved using an inequality that 

contains both the sample size and the Student t-quantile, which depends on the sample size, is 

an estimate of minimal sample size needed to reject the null hypothesis using an inference 

test’s statistics. The null hypothesis rejection follows if and only if the test statistic is greater 

than the appropriate quantile with a given confidence level, either the standard normal one or 

the Student t-one. That condition may be reformulated analogously as for the first example 

with confidence intervals – the null hypothesis is rejected if and only if the sample size is 

large enough that a modified test statistic is greater than a derived constant under a given 

confidence level (Davenport & Roth, 1955). Thus, this is, in fact, an example of Diophantine 

inequality for another selected statistical problem. 

This study addresses the mentioned issues with minimal sample size estimation to 

either keep the confidence interval’s width lower than a given constant or ensure a slightly 

modified inference test statistic is greater than a given constant. The tricky part is that the 

Diophantine inequalities that solve the tasks contain both the sample size and 

Student t-quantile, a non-implicit function of the size. Therefore, we propose general refining 

of the tasks together with a general formulation of an appropriate Diophantine inequality. By 

suggesting a numerical approach and tabulation of specially defined terms, general and exact 
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solutions are provided. We also discuss how the usage of standard normal quantiles instead of 

the Student t-quantiles may lead to inaccurate estimation of the sample size. 

 

1 Standard normal quantiles and Student t-quantiles 

Assuming a random variable 𝑍 follows the standard normal distribution, 𝑍~𝑁(0, 12), then the 

(1 − 𝛼 2⁄ )–th standard normal quantile is 𝑧1−𝛼 2⁄ , so that 

 𝑃(𝑍 ≤ 𝑧1−𝛼 2⁄ ) = 𝐹𝑍(𝑧1−𝛼 2⁄ ) = 1 − 𝛼 2⁄ , (1) 

where the term 𝑃(∙) stands for a probability, 𝐹𝑍 is the cumulative distribution function of the 

variable 𝑍 and 𝛼 ∈ (0, 1) is the confidence level. Thus, the (1 − 𝛼 2⁄ )–th standard normal 

quantile 𝑧1−𝛼 2⁄  is then equal to 

 𝑧1−𝛼 2⁄ = 𝐹𝑍
−1 (𝐹𝑍(𝑧1−𝛼 2⁄ )) = 𝐹𝑍

−1(1 − 𝛼 2⁄ ). (2) 

The cumulative distribution function 𝐹𝑍 is necessary to evaluate the quantile 𝑧1−𝛼 2⁄  

and is equal to Newton definite integral of the probability mass function 𝑓𝑍 from −∞ to 

𝑧1−𝛼 2⁄ . So using the formula (1) we get 

 

𝐹𝑍(𝑧1−𝛼 2⁄ ) = ∫ 𝑓𝑍(𝑥)d𝑥

𝑧1−𝛼 2⁄

−∞

= ∫
1

√2𝜋
𝑒−

1

2
𝑥2

d𝑥

𝑧1−𝛼 2⁄

−∞

, (3) 

however, the definite integral from formula (3) can be simplified and evaluated not 

analytically, only numerically (Lukacs & King, 1954). Consequently, the (1 − 𝛼 2⁄ )–th 

standard normal quantile 𝑧1−𝛼 2⁄  from the formula (2) cannot be expressed implicitly, since 

the 𝐹𝑍
−1 function cannot be derived analytically and is usually tabulated or calculated 

numerically using statistical software. 

Similar to the standard normal distribution case, assuming a random variable 𝑇 

follows Student t-distribution, 𝑇~𝑇(𝜗), then the (1 − 𝛼 2⁄ )–th Student quantile is 𝑡1−𝛼 2⁄ (𝜗) 

for 𝜗 ∈ ℕ degrees of freedom. Keeping other mathematical notation the same as above, the 

cumulative distribution function 𝐹𝑇 is equal to Newton definite integral of the probability 

mass function 𝑓𝑇 from −∞ to 𝑡1−𝛼 2⁄ (𝜗). So similarly to the formula (3) we get 

 

𝐹𝑇 (𝑡1−𝛼 2⁄ (𝜗)) = ∫ 𝑓𝑇(𝑥)d𝑥

𝑡1−𝛼 2⁄ (𝜗)

−∞

∫
Γ (

𝜗+1

2
)

√𝜗𝜋Γ (
𝜗

2
)

(1 +
𝑥2

𝜗
)

−
𝜗+1

2

d𝑥,

𝑡1−𝛼 2⁄ (𝜗)

−∞

 (4) 

where Γ is the gamma function, Γ(𝑠) = ∫ 𝑥𝑠−1𝑒−𝑥d𝑥
∞

0
 for any 𝑠 ∈ ℝ. Although, the definite 

integral from formula (4) can be again evaluated only numerically (Chen et al, 2019). 

Therefore, the (1 − 𝛼 2⁄ )–th Student quantile 𝑡1−𝛼 2⁄ (𝜗) for 𝜗 ∈ ℕ degrees of freedom cannot 
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be expressed in the implicit form (the 𝐹𝑇
−1 function cannot be derived analytically), and, thus, 

similarly as for the standard normal quantile, is tabulated or calculated numerically using 

appropriate software. Thus, Diophantine inequalities using standard normal or Student 

t-quantiles can usually be solved only numerically. 

 

2 Selected classes of statistical problems solved using Diophantine 

inequalities 

In the following subsections, we briefly recapitulate selected sorts of problems which 

solutions are available using Diophantine inequalities of our interest. 

 

2.1 Searching for minimum sample size that ensures confidence interval’s width of an 

estimated parameter is small enough 

In this subsection, we assume a class of a confidence interval estimate for a sample parameter 

such that its halfwidth ∆ is proportional to a term 
𝜅1−𝛼 2⁄

√𝑛
, where 𝑛 is the sample size, and 

𝜅1−𝛼 2⁄  is either (1 − 𝛼 2⁄ ) standard normal quantile, 𝑧1−𝛼 2⁄ , or Student t-quantile, 𝑡1−𝛼 2⁄ (𝜗), 

respectively, for a given 𝛼 ∈ (0, 1). So, if the term 
𝜅1−𝛼 2⁄

√𝑛
 increases, the confidence interval’s 

(half)width ∆ increases, too, and vice versa. The confidence interval halfwidth ∆ might be 

a function of other terms 𝛿1, 𝛿2, 𝛿3, …, independent on the term 
𝜅1−𝛼 2⁄

√𝑛
. Thus, in other words, 

 ∆ = 𝑓 (
𝜅1−𝛼 2⁄

√𝑛
, 𝛿1, 𝛿2, 𝛿3, … )    and    ∆ ∝

𝜅1−𝛼 2⁄

√𝑛
. (5) 

Furthermore, in case there is  𝜅1−𝛼 2⁄ ≡ 𝑡1−𝛼 2⁄ (𝜗) in formula (6), the degrees of 

freedom 𝜗 also depend on the sample size 𝑛, so 𝜗 ∝ 𝑛 and, therefore, 𝑡1−𝛼 2⁄ (𝜗) ∝ 𝑛. 

Eventually, both the numerator and denominator of the fraction 
𝑡1−𝛼 2⁄ (𝜗)

√𝑛
 depends on the 

sample size 𝑛. 

The searching for the minimum sample size 𝑛 that guarantees the halfwidth of the 

parameter’s confidence interval would not be larger than ∆ may be defined as searching for 

minimal 𝑛 that 

 𝑓 (
𝜅1−𝛼 2⁄

√𝑛
, 𝛿1, 𝛿2, 𝛿3, … ) ≤ ∆. (6) 

In case there is 𝜅1−𝛼 2⁄ ≡ 𝑧1−𝛼 2⁄  in inequality (6), since the terms 𝛿1, 𝛿2, 𝛿3, … are 

independent on the term 
𝜅1−𝛼 2⁄

√𝑛
, the denominator √𝑛 can be isolated and the (Diophantine) 

inequality (6) may be rewritten as 𝑓 (
𝑧1−𝛼 2⁄

∆
, 𝛿1, 𝛿2, 𝛿3, … ) ≤ √𝑛. That enables to easily 
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estimate the minimum value of 𝑛. However, in case there is 𝜅1−𝛼 2⁄ ≡ 𝑡1−𝛼 2⁄ (𝜗) in inequality 

(6), the tricky part is that not only the denominator of 
𝑡1−𝛼 2⁄ (𝜗)

√𝑛
, but also its numerator depends 

on 𝑛. So, simple isolation of 𝑛 could not work to get an exact value of 𝑛. 

As an example of this confidence intervals’ class, a halfwidth of a confidence interval 

for a population mean follows a form ∆ =
𝜅1−𝛼 2⁄

√𝑛
∙ 𝑠, where 𝑠 is a sample standard deviation. 

Similarly, a halfwidth of a confidence interval for a population proportion follows a form ∆ =

𝜅1−𝛼 2⁄

√𝑛
∙ √𝑝(1 − 𝑝), where 𝑝 is a sample proportion. Thus, they do not violate the assumptions 

in (5) and (6). The task for the first example is to find minimal 𝑛 so that 
𝜅1−𝛼 2⁄

√𝑛
∙ 𝑠 ≤ ∆, and for 

the second is to find minimal 𝑛 so that 
𝜅1−𝛼 2⁄

√𝑛
∙ √𝑝(1 − 𝑝) ≤ ∆. While the solution for the 

standard normal quantiles is easy following the (6) and rewriting the inequalities as 
𝑧1−𝛼 2⁄

∆
∙

𝑠 ≤ √𝑛 or 
𝑧1−𝛼 2⁄

∆
∙ √𝑝(1 − 𝑝) ≤ √𝑛, in case of the Student t-quantiles, such isolation is not 

helpful (and possible), since Student t-quantile 𝑡1−𝛼 2⁄ (𝜗) depends on sample size 𝑛 as 𝜗 =

𝑛 − 1, so the halfwidth ∆ is ∆ =
𝑡1−𝛼 2⁄ (𝜗)

√𝑛
∙ 𝑠 =

𝑡1−𝛼 2⁄ (𝑛−1)

√𝑛
∙ 𝑠 or ∆ =

𝑡1−𝛼 2⁄ (𝜗)

√𝑛
∙ √𝑝(1 − 𝑝) =

𝑡1−𝛼 2⁄ (𝑛−1)

√𝑛
∙ √𝑝(1 − 𝑝), respectively. 

 

2.2 Searching for minimum sample size that ensures inference test’s statistic is greater 

than or equal to appropriate quantile 

We take into account for all inference tests with a test’s statistic 𝑠 as a function 𝑠 =

𝑓(√𝑛, 𝛿1, 𝛿2, 𝛿3, … ), where 𝑛 is a sample size and 𝛿1, 𝛿2, 𝛿3, … are terms independent on the 

sample size 𝑛, and the statistic 𝑠 is proportional to √𝑛, i. e. 𝑠 ∝ √𝑛. Assuming 𝛼 ∈ (0, 1) is 

a confidence level, then, usually, if the test’ statistic 𝑠 is greater than or equal to an 

appropriate (1 − 𝛼 2⁄ )-th quantile, either the standard normal one, 𝑧1−𝛼 2⁄ , or the Student 

t-quantile, 𝑡1−𝛼 2⁄ (𝜗), the null hypothesis is rejected. Considering all arguments of the 

function 𝑠 = 𝑓(√𝑛, 𝛿1, 𝛿2, 𝛿3, … ) remain roughly constant with increasing sample size 𝑛, 

a typical task is to estimate minimal sample size 𝑛 that would result into the null hypothesis 

rejection. Thus, the task is to find minimal 𝑛 so that  

 𝑠 = 𝑓(√𝑛, 𝛿1, 𝛿2, 𝛿3, … ) ≥ 𝜅1−𝛼 2⁄ , (7) 

which, since √𝑛 is not dependent on 𝛿1, 𝛿2, 𝛿3 …, can by rewritten as 

 𝜅1−𝛼 2⁄

√𝑛
≤ 𝑓(𝛿1, 𝛿2, 𝛿3, … ) = 𝑠. (8) 
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In case of 𝜅1−𝛼 2⁄ ≡ 𝑧1−𝛼 2⁄  in Diophantine inequality (8), the solution is made by 

isolation of √𝑛 as following, 
𝑧1−𝛼 2⁄

𝑠
≤ √𝑛. However, such an isolation of √𝑛 could not work 

for exact solution of the inequality (8) if 𝜅1−𝛼 2⁄ ≡ 𝑡1−𝛼 2⁄ (𝜗), since both the numerator and 

denominator od the term 
𝑡1−𝛼 2⁄ (𝜗)

√𝑛
 depends on 𝑛.  

As an example of an inference test of this class, the classical one-sample t-test uses 

test statistic following a form of 𝑠 = 𝑓(√𝑛, 𝛿1, 𝛿2, 𝛿3, … ), where 𝑛 is a sample size and 

𝛿1, 𝛿2, 𝛿3, … are term independent of the sample size. The null hypothesis, claiming there is no 

statistical difference between the population mean and a constant, is rejected at the confidence 

level 𝛼 ∈ (0, 1), if and only if the test statistic is greater than an appropriate quantile, 𝜅1−𝛼 2⁄ ; 

thus, when 𝑠 = 𝑓(√𝑛, 𝛿1, 𝛿2, 𝛿3, … ) ≥ 𝜅1−𝛼 2⁄  The task is then to find minimal 𝑛 so that 

𝜅1−𝛼 2⁄

√𝑛
≤ 𝑓(𝛿1, 𝛿2, 𝛿3, … ) = 𝑠 for 𝜅1−𝛼 2⁄ ∈ {𝑧1−𝛼 2⁄ , 𝑡1−𝛼 2⁄ (𝜗)}, where 𝜗 = 𝑛 − 2 stands for 

degrees of freedom and 𝛼 ∈ (0, 1) is the confidence level. 

 

3 Proposed approaches to solutions of the defined Diophantine 

inequalities 

When we assume usage of a standard normal quantile, so there is 𝜅1−𝛼 2⁄ ≡ 𝑧1−𝛼 2⁄  is formulas 

(6) and (7), the formulas could be rewritten as 𝑓 (
𝑧1−𝛼 2⁄

∆
, 𝛿1, 𝛿2, 𝛿3, … ) ≤ √𝑛 and, 

𝑧1−𝛼 2⁄

𝑓(𝛿1,𝛿2,𝛿3,… )
≤ √𝑛, respectively. Since the terms 𝑧1−𝛼 2⁄ , 𝛿1, 𝛿2, 𝛿3, … are all independent on 𝑛, 

we can exactly find such 𝑛 ∈ ℕ that solves the inequalities. 

However, if we assume Student t-quantiles, 𝜅1−𝛼 2⁄ ≡ 𝑡1−𝛼 2⁄ (𝜗), there is no 

possibility to isolate √𝑛 in formulas (6) and (7), since the term 𝑡1−𝛼 2⁄ (𝜗) also depends on 𝑛 

due to degrees of freedom, 𝜗, which are a linear function of 𝑛, 𝜗 = 𝑓(𝑛), typically as 𝜗 = 𝑛 − 1 

or 𝜗 = 𝑛 − 2. As a consequence, an analytical solution, as in the previous paragraph, is not 

possible here. Although, thanks to the assumed proportionality ∆ ∝
𝑡1−𝛼 2⁄ (𝜗)

√𝑛
, we can 

reformulate the formula (6) as 
𝑡1−𝛼 2⁄ (𝜗)

√𝑛
≤

∆

𝑓(𝛿1,𝛿2,𝛿3,… )
= const and formula (7) as 

𝑡1−𝛼 2⁄ (𝜗)

√𝑛
≤

𝑠

𝑓(𝛿1,𝛿2,𝛿3,… )
= const. So, we get a Diophantine inequality as follows, 

 𝑡1−𝛼 2⁄ (𝜗)

√𝑛
≤ 𝑟 = const. > 0, (9) 

from which we get 
𝑡1−𝛼 2⁄ (𝜗)

𝑟
≤ √𝑛. 
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3.1 Usage of standard normal quantiles and Student t-quantiles 

Usually, we use standard normal quantiles in statistical problem enabling to assume 

asymptotic properties of applied statistics are met, e. g. the sample size is sufficient and 

estimates used to evaluate the statistics are known in advance from literature or large 

populations. But, in fact, this is hardly satisfied using real-world data. Thus, Student t-quantile 

should be preferred before the standard normal ones, even if they may challenge the 

above-mentioned problems. 

As for illustration, assuming 𝛼 = 0.05 and 𝜗 = 𝑓(𝑛) = 𝑛 − 1, we got different estimates 

of minimal 𝑛 satisfying the inequality (9), is shown in Table 1. Thus, using the standard 

normal quantiles tends to underestimate the minimal 𝑛. 

 

Table 1: Table of minimal 𝑛 estimates using both standard normal quantiles and 

Student t-quantiles for 𝛼 = 0.05 and 𝜗 = 𝑓(𝑛) = 𝑛 − 1 

𝑟 0.70 0.50 0.30 0.10 0.05 

estimated minimal 𝑛 using 𝑧0.975 8 16 43 385 1537 

estimated minimal  𝑛 using 𝑡0.975(𝑛 − 1) 11 18 46 387 1540 

 

3.2 A numerical solution of the defined Diophantine inequalities 

As the first estimate of 𝑛 ∈ ℕ in (9), we can use that for each 𝜗, it is 𝑧1−𝛼 2⁄ ≤ 𝑡1−𝛼 2⁄ (𝜗); 

thus, using (9), it is also 
𝑧1−𝛼 2⁄

𝑟
≤

𝑡1−𝛼 2⁄ (𝜗)

𝑟
≤ √𝑛 and 𝑛 ≥ (

𝑧1−𝛼 2⁄

𝑟
)

2

. Finally, we get the first 

estimate using the ceiling function1 as 𝑛 = ⌈
𝑧1−𝛼 2⁄

𝑟
⌉

2

 which obviously 𝑛 = ⌈
𝑧1−𝛼 2⁄

𝑟
⌉

2

∈ ℕ. 

Now let us prove a (Diophantine) solution 𝑛 ∈ ℕ of inequality (9) always exists. Using 

the theorem of two bounding functions’ limits, if ∀𝑛 ∈ ℕ it is 
0

√𝑛
≤

𝑡1−𝛼 2⁄ (𝜗)

√𝑛
≤

max
∀𝜗∈ℕ

{𝑡1−𝛼 2⁄ (𝜗)}

√𝑛
< ∞, then lim

𝑛→∞

0

√𝑛
= 0 and lim

𝑛→∞

max
∀𝜗∈ℕ

{𝑡1−𝛼 2⁄ (𝜗)}

√𝑛
= 0, it is also lim

𝑛→∞

𝑡1−𝛼 2⁄ (𝜗)

√𝑛
= 0. 

Thus if lim
𝑛→∞

𝑡1−𝛼 2⁄ (𝜗)

√𝑛
= 0, then also 

𝑡1−𝛼 2⁄ (𝜗)

√𝑛
≤ 𝑟 > 0 and 𝑛 ∈ ℝ must always exist. If 𝑛 ∈ ℝ 

exists, then also ⌈𝑛⌉ ∈ ℕ as Diophantine solution exists, holding ⌈𝑛⌉ ≥ 𝑛. 

So, we suggest the following algorithm to numerically find the minimal 𝑛 ∈ ℕ 

satisfying the Diophantine inequality (9), see Algorithm 1. 

 

 
1 The ceiling function maps 𝑥 to the least integer greater than or equal to 𝑥, denoted ⌈𝑥⌉. So, ⌈𝑥⌉ = min

𝑧∈ℤ
{𝑧 ≥ 𝑥}. 
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Algorithm 1: Numerical searching for the minimal 𝑛 ∈ ℕ satisfying the Diophantine 

inequality (9)  

 

 

3.3 A solution using tabulation of the defined Diophantine inequalities 

Assuming the inequality (9) as equation, i. e. 

 𝑡1−𝛼 2⁄ (𝜗)

√𝑛
= 𝑟 = const. > 0, (10) 

the confidence level 𝛼 ∈ (0, 1), and also that the degrees of freedom are a linear function of 𝑛, 

𝜗 = 𝑓(𝑛), typically as 𝜗 = 𝑛 − 1 or 𝜗 = 𝑛 − 2, we can simply tabulate the left-hand side of equation 

(10), i. e. the fractions of Student t-quantiles 𝑡1−𝛼 2⁄ (𝑓(𝑛)) and square root of 𝑛, i. e. √𝑛. See the 

logic of the tabulation in Table 2. Using such a table, a numerical estimate of 𝑛 ∈ ℕ can be 

found very precisely in an appropriate row of the first column the table, if 𝑟 is found in the 

third column of the table. When 𝑡1−𝛼 2⁄ (𝑓(𝑛)) √𝑛⁄ <  𝑟 < 𝑡1−𝛼 2⁄ (𝑓(𝑛 + 1)) √𝑛 + 1⁄ , then 

the minimal sample size is better taken as 𝑛 + 1, not as 𝑛. 

 

Table 2: Tabulation of 𝑡1−𝛼 2⁄ (𝑓(𝑛)) √𝑛⁄  fractions for given degrees of freedom’s 

function 𝜗 = 𝑓(𝑛)  and confidence level 𝛼 ∈ (0, 1) 

𝑛 𝜗 = 𝑓(𝑛) 𝑡1−𝛼 2⁄ (𝑓(𝑛)) √𝑛⁄  

2 𝑓(2) 𝑡1−𝛼 2⁄ (𝑓(2)) √2⁄  

3 𝑓(3) 𝑡1−𝛼 2⁄ (𝑓(3)) √3⁄  

4 𝑓(4) 𝑡1−𝛼 2⁄ (𝑓(4)) √4⁄  

⋮ ⋮ ⋮ 

 

Conclusion remarks 

Estimation of minimum sample size, ensuring the parameter’s confidence interval width will 

be low enough, or inference statistic would be large enough, should use Student t-quantiles 

rather than the standard normal ones not to underestimate the sample size. However, since 

Data: a value of 𝑟 > 0, confidence level 𝛼 ∈ (0, 1) and degrees of freedom 𝜗 = 𝑓(𝑛) 

Result: numerical estimate of minimal 𝑛 ∈ ℕ satisfying the Diophantine inequality (9) 

1 𝑛 = ⌈
𝑧1−𝛼 2⁄

𝑟
⌉

2
; 

2 while 
𝑡1−𝛼 2⁄ (𝑓(𝑛))

√𝑛
> 𝑟 do 

3  𝑛 = 𝑛 + 1; 

4 𝑛; 
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Student t-quantiles depend on the sample size via degrees of freedom, the estimation of 

minimum sample size is tricky and demands numerical solving of Diophantine inequality. 

We defined the task and the inequality and suggested the numerical approach and 

tabulation of Student t-quantiles divided by sample sizes, both enabling finding the accurate 

minimal sample size estimate. While the numerical technique usually requires computational 

software and provides an exact solution using an initial estimate of minimal sample size via 

the standard normal quantile, the tabulation approach demands only paper-n-pencil and 

searching for the estimate in the derived table. 
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