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THE PARALOGISTIC-NEGATIVE BINOMIAL 

DISTRIBUTION AND ITS APPLICATIONS 

Sirithip Wasinrat – Boonyarit Choopradit 
   

Abstract 

The objectives of this research were fourfold: 1) to develop a model that combined the 

paralogistic distribution with the negative binomial distribution, 2) to obtain the proposed 

model’s statistical properties including survival function, hazard function, quantile function, 

and likelihood function, 3) to use the maximum likelihood method to estimate model 

parameters, and 4) to apply the model to two insurance datasets. Results demonstrated the 

effectiveness of the new four-parameter model, named the paralogistic-negative binomial 

distribution, which showed more flexibility when modeling lifetime data. The proposed 

model’s statistical properties including the survival function, hazard function, quantile 

function, and likelihood function were derived. Model parameters were estimated using the 

maximum likelihood method, and the observed information matrix was obtained. A 

simulation study was carried out to investigate the accuracy of model parameter estimation. 

Two insurance datasets were used to compare the proposed model’s flexibility to other 

traditional lifetime models and the new distribution proved to be more accurate. 

Keywords:  mixture distribution, quantile function, maximum likelihood method 
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Introduction 

The paralogistic (PL) continuous distribution function is well known in insurance and 

economic applications (Kleiber & Kotz, 2003), with probability density function (PDF) of a 

random variable X  
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The corresponding cumulative distribution function (CDF) can be represented as:  
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Where 0   is a scale parameter and 0   is a shape parameter. 
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Previous researchers expanded the PL distribution. Idemudia & Ekhosuehi (2019) 

proposed a new PL distribution with three parameters by adding the location parameter, while 

Bhati et al. (2019) extended the PL distribution, called PL-MPLG distribution, with four 

parameters. Continuous development of new distribution models has evolved to match the 

increasing diversity of data and changing circumstances. A method for combined distribution as 

the finite mixture distribution was presented by Hall & Zhou (2003) and Balakrishnan et al. 

(2009), while the infinite mixture distribution was suggested by Gómez-Déniz et al. (2008) and 

Withers & Nadarajah (2011). The negative binomial (NB) distribution is also used in mixture 

distribution. Rodrigues et al. (2011) proposed the Weibull NB distribution, while Ortega et al. 

(2012) proposed the NB-beta Weibull distribution, Yusuf et al. (2016) proposed the inverse 

Burr NB distribution, and Zubair et al. (2018) proposed the power-Cauchy NB distribution. 

This paper proposed a new model that combined the PL and NB distributions and 

presented the survival function, hazard function, and quantile function mathematical 

properties. Model parameters were estimated using the maximum likelihood method and a 

simulation study was performed. This new distribution model demonstrated potential as 

flexibility when dealing with two real datasets. 

 

1 Mixture distributions 

1.1 The G-negative binomial distribution 

Percontini et al. (2 0 1 3 ) proposed a general family of continuous distributions called the G-

negative binomial (G-NB) family. Let Z be a random variable from zero truncated NB (ZTNB) 

probability mass function (PMF) with parameters 0s   and  0,1   given by 
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Let 1 2, ,..., ZW W W
 
be a random sample from any density function ( )g x  where Z and W 

are independent random variables. Let  1 2min , ,..., ZX W W W , then the conditional CDF of 
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for 0x  , s  and   are shape parameters. Then, the CDF of X reduces to 
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The PDF corresponding to (3) is given by  
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The survival function and hazard rate function of X are given by 
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The random variable X following the family (3) - (6) follows a G-NB distribution. The 

G distribution is a sub-model when 1s   and 0  . This generalization is obtained by 

increasing the number of parameters compared to the G distribution or ( )g x , thereby adding 

more flexibility to the generated distribution (Percontini et al., 2013). 

  

1.2 The paralogistic-negative binomial distribution  

A new mixture distribution of the PL distribution and NB distribution using the G-NB 

distribution was proposed in Section 1.1 

Definition 1.  Let 0X   be a random variable of paralogistic-negative binomial (PLNB) 

distribution with parameters , , ,s    and   denoted as ( , , , )X PLNB s     with 0s  ,

0 1  , 0   and 0  . 

Theorem 1. Let ( , , , )X PLNB s    ,  then the PLNB’s CDF is 
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Proof: In Equation (3) substituting ( )G x  with Equation (2) completes the proof of the theorem. 

Theorem 2. Let ( , , , )X PLNB s    , then the PLNB’s PDF is  
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Proof: In Equation (4) substituting  g x  and ( )G x  with Equations (1) and (2),  respectively 

completes the proof of the theorem. 
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 Fig. 1 displays the PDF and CDF curves for the PLNB distribution with selected 

values for the parameters. 

 

Fig. 1: The PLNB’s PDF and CDF curves with some specified parameter values 

 

Source: Own research 

 

2 Some properties of the PLNB distribution 

2.1 Survival function and hazard function 

Theorem 3. Let ( , , , )X PLNB s    , then the PLNB’s  survival function is 
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Proof: In Equation (5) substituting  with Equation (2)  completes the proof of the theorem. 

Theorem 4. Let ( , , , )X PLNB s    , then the PLNB’ s  hazard function is 
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Proof:  In Equation (6) substituting  g x  and ( )G x  with Equations (1) and (2),  respectively 

completes the proof of the theorem. 

 

2.2 Quantile function 

Let ( , , , )X PLNB s    , then the quantile function (QF) is denoted by  Q p  and 

   
1

Q p F p


 , where  0,1p . 

Theorem 5. Let ( , , , )X PLNB s    ,  then the QF of X  is given as: 

( )G x
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 ,  0,1p . This implies that   F Q p p . As 

( , , , )X PLNB s    , or the CDF of X as noted in Equation (7), we can solve for  Q p . 

 

3 Parameter estimation of the PLNB distribution 

The parameters of the PLNB were estimated using the maximum likelihood estimation (MLE) 

function as follows: 
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The log-likelihood function of the above expression is given by 

         

 
 

 

     

1

1 1

1

ln , , , ln ln 2 ln ln

1
1 ln 1 ln

1

ln 1 1 1 ln 1

n

i
i

n n

i
i i

i

ns

i
i

L s n s n n x

s x
x

n x







      




  



 





    

            
      

        
   

 

The MLE solutions for , ,s   and  can be obtained by simultaneously solving the 

resulting equations as follow: 
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A numerical procedure is used, such as the Newton-Raphson method. In this study, the MLE 

estimates of ˆ ˆˆ, ,s    and ̂ were obtained using the “mledist” function in the R software  

“fitdistrplus” package suite (Delignette-Muller & Dutang, 2015). 

 

4 Simulation study 

A simulation study was conducted to assess the effectiveness of the MLE of the parameters ,s ,  

  and   in the previous section. The estimates of , ,s    and   were obtained using the 

“mledist” function in the R software “fitdistrplus” package suite (Delignette-Muller & Dutang, 2015). 
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The study was based on 2,000 simulated samples from the PLNB with different 

sample sizes: n = 25, 50, and 200. Random variables were generated from the PLNB using the 

inverse of the distribution function. Consider the identity 
1( ) ( )F X U X F U    where U 

is the standard uniform distribution, or the uniform (0, 1). Let ( , , , )X PLNB s    , then the 

random variable can be generated from 
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Tab. 1: Mean estimates, standard deviation and root mean squared errors of , ,s   and   

Distribution n Parameter Mean estimate SD Bias RMSE 

PLNB (2,0.5,2,2) 25 s  0.9257 1.7671 -1.0742 2.0673 

    0.6791 0.3405 0.1791 0.3846 

    2.4735 1.0658 0.4735 1.1658 

    2.2431 0.3930 0.2431 0.4620 

 50 s  1.0343 1.7407 -0.9656 1.9899 

    0.6772 0.3333 0.1772 0.3774 

    2.5184 1.0410 0.5184 1.1625 

    2.1518 0.2547 0.1518 0.2964 

 200 s  1.3725 1.9954 -0.6274 2.0907 

    0.6783 0.3183 0.1783 0.3647 

    2.6623 1.13290 0.6623 1.3118 

    2.0826 0.1523 0.0826 0.1732 

PLNB (5,0.8,8,10) 25 s  5.0663 9.0458 0.0663 9.0415 

    0.7298 0.3748 -0.0701 0.3811 

    8.1346 3.5840 0.1346 3.5847 

    14.0292 5.8646 4.0292 7.1130 

 50 s  5.3943 8.7087 0.3943 8.7133 

    0.7146 0.3694 -0.0853 0.3790 

    8.3753 3.3998 0.3753 3.4187 

    11.9584 3.5199 1.9584 4.0265 

 200 s  7.10969 8.1914 2.1096 8.4547 

    0.6933 0.3429 -0.1066 0.3590 

    8.7770 2.8628 0.7770 2.9650 

    10.3842 1.2167 0.3842 1.2753 

Source: Own research 

 

Tab. 1 presents mean values of the parameter estimates as well as the standard deviation 

(SD), bias and root mean squared errors (RMSEs) of the parameter estimates for different 
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sample sizes. The estimates of , ,s   and   were close to the true values, while the RMSE 

values for the estimates of , ,s   and   decreased when the sample size n increased. 

 

5 Applications 

The proposed model’s efficiency was evaluated by applying it to two real datasets for 

automobile insurance claims and automobile bodily injury claims which are applied in 

insurance. These datasets were fitted to the PLNB as PL, inverse PL (IPL) and log logistic 

(LOL) PDF distributions as follows: 
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, respectively.  

The MLE was then used to estimate parameters in the PLNB and other comparative models. 

Model comparison was conducted using Akaike’s information criterion (AIC) and 

Bayesian information criterion (BIC), given by 

ˆ2 ( ) 2AIC LL k    and  ˆ2 ( ) logBIC LL k n   , 

where ˆ( )LL   denotes the log-likelihood function with a vector estimated parameter ̂ , k is 

the number of estimated parameters, and n is the sample size. The model with the smallest 

value for these criteria was used as the preferred model to describe each dataset. 

 

5.1 Automobile insurance claims 

The automobile insurance claims dataset included 6,773 observations of the amount paid on a 

closed claim in US dollars, using claims experience from a large midwestern US property and 

casualty insurer for private passenger automobile insurance (Frees, 2010). Some descriptive 

statistics are listed in Tab. 2. Tab. 3 presents the estimated parameters and comparison criteria 

AIC and BIC for the PLNB, PL, IPL and LOL distributions. The PLNB provided the best data 

fit among all the models considered. 

 

Tab. 2:  Descriptive statistics of the amount paid on closed claims in US dollars 

n Minimum Maximum Median Mean Standard deviation 

6,773 9.5 60,000 1001.70 1853.00 2,646.91 

Source: Own research 
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Tab. 3:  Parameter estimates, AIC, and BIC from automobile insurance claims dataset 

Distribution Estimate AIC BIC 

PLNB ŝ =0.4197, ̂ =0.8437, ̂ =3,389.25, ̂ =1.5936 114356.5 114363.8 

PL ̂ =1.4531, ̂ =1,507.01 114412.7 114426.4 

IPL ̂ =1.4622, ̂ =723.28 114387.0 114400.6 

LOL ̂ =2.7322, ̂ =1.9768 114360.3 114373.9 

Source: Own research 

 

5.2 Automobile bodily injury claims 

The automobile bodily injury claims dataset included 1,340 observations of the claimant’s total 

economic loss (in thousands). The dataset used was from the Insurance Research Council (IRC), 

a division of the American Institute for Chartered Property Casualty Underwriters and the 

Insurance Institute of America (Frees, 2010). Some descriptive statistics are listed in Tab. 4. Tab. 

5 presents the estimated parameters and comparison criteria AIC and BIC for the PLNB, PL, IPL 

and LOL distributions. The PLNB provided the best data fit among all the models considered. 

 

Tab. 4: Descriptive statistics of the claimant’s total economic loss (in thousands) 

n Minimum Maximum Median Mean Standard deviation 

1,340 0.005 1,067.697 2.331 5.954 33.1362 

Source: Own research 

 

Tab. 5: Parameter estimates, AIC and BIC from the automobile insurance claims dataset 

Distribution Estimate AIC BIC 

PLNB ŝ =19.0570, ̂ =0.2232, ̂ =12.7534, ̂ =1.0466 6275.7 6296.5 

PL ̂ =1.1844, ̂ =2.2931 6300.1 6310.5 

IPL ̂ =1.1349, ̂ =1.5573 6331.0 6341.4 

LOL ̂ =1.2255, ̂ =1.8678 6314.6 6325.0 

Source: Own research 

 

Conclusions 

This paper defined a new distribution, the so-called PLNB distribution that combined the PL 

and NB distributions using the G-NB distribution. Plots of PDF and CDF were presented. 

Various standard properties were derived. Model parameters were estimated using the 

maximum likelihood method. A simulation study was conducted to determine the MLE and 

the results were stable and approached the true values as the sample sizes increased. Finally, 

the PLNB model was fitted to two real datasets to show the potential of the new distribution.  
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