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Abstract 

In the literature, identifying clusters of similar objects and identifying anomalies/outliers are 

often discussed together. At the stage of classification of objects, there may be such objects 

which are not sufficiently similar to others. At this point, a popular question arises: whether 

these objects should be labelled as anomalies or assigned to the nearest cluster. In this work, 

we propose a new anomaly detection technique – named LiftOut – which is based on a 

wavelet-like denoising method called “Lifting”. The proposed method works on 

agglomeratively built trees. LiftOut first detects anomalies in trees, then it removes points 

labelled as anomalies from trees. The final stage of the algorithm is to find nodes in trees 

where classes should be placed. LiftOut is applied on real world scenarios, and its 

performance is compared with the DBSCAN algorithm. While DBSCAN attempt to create 

new small size clusters for closely placed anomalies, LiftOut algorithm catches high 

percentage of anomalies and true clusters. 
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Introduction  

Clustering and anomaly/outlier detection are two related working area. While clustering finds 

different structures in a data set and organizes data according to the structures found, in 

anomaly detection, we try to identify points that significantly differ from the majority of the 

data. There is no single definition for anomalies; the definition of anomaly varies from 

application to application. The most general definition for anomaly is provided by Hawkins 

(1980): anomaly values are observations with different characteristics from other 

observations, and these observations are generated by different mechanism than the rest of the 

data.  

Anomaly detection methods are divided as statistical methods, proximity-based 

methods and clustering-based methods. Statistical methods are also branched as parametric 
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and non-parametric methods, and proximity-based methods are further divided into distance-

based, grid-based and density-based methods. Statistical methods make assumptions about the 

distribution of data or about the model that fits the data. Parametric methods assume that the 

distribution of the data is known, and parameters of the distribution is estimated using the 

data. Non-parametric methods do not need to make any assumptions on the distribution of 

data. The detailed review of statistical methods is available in Han et al. (2012). The 

proximity-based methods, on the other hand, label any object as an anomaly if the object is 

distantly placed from its neighbors. One distance-based method is presented by Knorr and Ng 

(1998). Their method is sensitive to two parameters given by the researcher: the maximum 

distance of an object to its neighborhood and the minimum number of objects in its 

neighborhood. Grid-based methods divide data space into multidimensional grids to detect 

anomalies (Han et al., 2012). If the diagonal length of the cell is well-defined, grid-based 

algorithms show high performances. The cost of the algorithm is an exponential function of 

the length of the data; the algorithm slows down as the size and number of data increase. 

Breunig et al. (2000) proposed a density-based algorithm called LOF (local outlier factor). 

LOF measures the density of k-neighborhood of an object to detect anomalies. LOF, however, 

is a computationally expensive algorithm. The final type of anomaly detection methods, 

clustering-based methods, assumes that “normal” objects belong to large and dense clusters 

while anomalies belong to small or sparse clusters, or these methods assume that anomalies 

are not belonged to any cluster. One of the well-known clustering-based methods is called 

PAM (partitioning around medoids; Kaufmann & Rousseeuw, 1987) algorithm which is based 

on k-medoids clustering algorithm. While PAM is an efficient method for small size data, the 

efficiency decreases as data size or number increases. Anomaly detection via a density-based 

clustering algorithm called DBSCAN was proposed by Ester et al. (1996).  

Bozkus and Barber (2023) proposed a lifting-based classification algorithm that 

detects irregular classes on dendrograms. The algorithm places classes on nodes automatically 

by eliminating the user manual intervention. This algorithm does not cluster some of the 

observations, or it finds small-size clusters. Researchers define non-clustered observation(s) 

and objects in small-size clusters as anomalies using the anomaly definition of Barnett and 

Lewis (1978): a point or group of points which is inconsistent with the majority of 

observations is defined as anomaly. In this research, the lifting algorithm is applied to detect 

all observations that create inconsistency in classification structures before the final 

classification structure is assigned. Classes are reconstructed after anomalies are removed. 

The necessary parameters are automatically estimated by the algorithm itself.  
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1 Method 

Wavelets is an orthonormal basis function, and it provides the multiscale division of a data set 

in Euclidean lattice (see e.g., Daubechies, 1992). Lifting provides the wavelet-like 

coefficients of a data set having a neighborhood structure. Early works of lifting consider data 

points placed in irregular Euclidean lattice. Later, Jansen et al. (2009) presented “lifting one 

coefficient at a time” (LOCAAT) algorithm which works on networks. The data points are 

assumed to be placed on nodes in networks. Binary trees are special networks, where each 

node is split into at most two internal nodes/leaves; thus, LOCAAT can be applicable on 

binary trees (dendrograms). Bozkus and Barber (2023) proposed a classification algorithm for 

binary trees based on the LOCAAT algorithm. In this work, an anomaly detection technique 

based on their method is presented.  

 

1.1 LOCAAT algorithm 

Noise-corrupted data is defined as 𝑔(𝑠𝑖) defined as 

𝑔(𝑠𝑖) = ℎ(𝑠𝑖) + 𝜀𝑖, 𝑖 = 1, … , 𝑛    (1) 

where the 𝑠𝑖  are nodes in a dendrogram, and 𝜀𝑖 ∼ 𝑁(0, 𝜎2) independently, and our interest is 

in ℎ(𝑠𝑖). We suppose that the function 𝑔(𝑠) has the form 

𝑔(𝑠) = ∑ 𝑐𝑛,ℓ𝜙𝑛,ℓ(𝑠)

𝑛

ℓ=1

, 

and the scale function is defined as  

𝜙𝑛,ℓ(𝑠𝑖) =    𝟙{ 𝑖 = ℓ}, 

where 𝑖, ℓ = 1, … 𝑛, and the indicator function 𝟙{A} takes the value one if A is true else zero. 

 Thus, it is obvious that the observed function values are the initial scaling coefficients (𝑐𝑛,ℓ).  

The signal 𝑔 can be written using the lifting transform as 

𝑔(𝑠) = ∑ 𝑑𝑗𝑘
𝜓𝑗𝑘

(𝑠)

𝑛

𝑘=𝑟+1

+ ∑ 𝑐𝑟,𝑘′𝜙𝑟,𝑘′(𝑠),

𝑘′∈ 𝑆𝑟

 

where detail coefficient of point 𝑗𝑘 , non-lifted points and wavelet functions are represented 

with 𝑑𝑗𝑘 , 𝑟 and 𝜓𝑗𝑘
, respectively. In addition, non-lifted points are defined in 𝑆𝑟 ⊂

{1, … , 𝑛}\{𝑗𝑘}, where 𝑘 =  𝑛, 𝑛 − 1, … , 𝑟 + 1. 

 

1.1.1 Forward lifting transform 
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LOCAAT algorithm selects a node from the tree; the difference between the selected node 

and its neighbors are computed. Then the node is removed from the tree, and its neighbors are 

updated, and the algorithm is repeated until 𝑟 nodes left in the tree.  

Scaling function at 𝑖𝑡ℎ node in stage 𝑘 is defined as one (𝑘 = 𝑛, 𝑛 − 1, … , 𝑟 + 1 and 

𝑖 = 1,2, … 𝑛), and the number of non-lifted points, 𝑟, is set to 2 that is the suggested choice in 

early works. 

LOCAAT algorithm is an iterative algorithm; it starts with stage 𝑘 = 𝑛. The initial 

integrated function, 𝐼𝑘,𝑖, is defined as the sum of the branch lengths between node 𝑖 and its 

neighbors. The first node to be lifted (𝑗𝑘)  is the one having the smallest 𝐼𝑘,𝑖, and neighbors of 

the lifted node 𝑗𝑘 (𝐽𝑘,𝑖) are set as the fist degree neighbors. Observed function values are the 

initial scaling coefficients, 𝑐𝑘,𝑖. 

The predicted function value of the lifted node is defined as sum of its neighbors’ 

weighted function values (yk,jk
= ∑ ai

kck,ii∈ Jk
). The weights (ai

k) are the inverse distances 

which make the sum of the weights to 1 (Jansen et al., 2009). 

The first stage of the lifting algorithm is the choice of the node-to-be-lifted, then detail 

coefficient of the lifted node 𝑗𝑘 is computed. Details are the differences between the observed 

and the predicted function values (djk
= ck,jk

− yk,jk
). Later, initial integrated values and 

scaling coefficients for neighbors are updated using Ik−1,i = Ik,i + a𝑖
𝑘Ik,jk

,   i ∈  Jk, and 

𝑐𝑘−1,𝑖 = 𝑐𝑘,𝑖 + 𝑏𝑖
𝑘𝑑𝑗𝑘

, 𝑖 ∈  𝐽𝑘, where 𝑏𝑖
𝑘 =

𝐼𝑘,𝑗𝑘
𝐼𝑘−1,𝑖

∑ 𝐼𝑘−1,ℓ
2

ℓ∈𝐽𝑘

⁄ . Then the lifted node is 

removed from the tree, and the neighborhood structure of the node 𝑗𝑘 is updated using the 

minimum spanning tree algorithm. After that the process is repeated for stage 𝑘 = 𝑛 − 1, 𝑛 −

2, … 𝑟 + 1. 

 

1.1.2 Denoising process 

After applying lifting transformation to noise corrupted data, noisy detail coefficients are 

obtained. In the literature, one of the wavelet shrinkage techniques is applied to denoise detail 

coefficients. Then backward transformation is applied to get denoised function values.  

Wavelet shrinkage methods assume that big detail coefficients include some noise 

next to real signal value, and small detail coefficients include only noise. It is assumed that 

noises are independently normally distributed with zero mean and the same 𝜎2 variance. If 

any detail coefficient is less than a threshold, it is set to zero. One choice of the threshold is 

the universal threshold (Donoho and Johnstone, 1995) defined as 
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𝜆 = 𝜎√2 log 𝑛, 

and the 𝜎 is estimated using the mean absolute deviation from the median (MEAD): 

MEAD(𝑑𝑘)=mean([|𝑑𝑘 − medyan(𝑑𝑘)|]), 

where 𝑑𝑘 are the detail coefficients at 𝑘𝑡ℎ  resolution level. 

 

1.1.3 Artificial resolution levels 

In the discrete wavelet transformation, detail coefficients are naturally grouped at resolution 

levels. Half of the coefficients are at the finest resolution level, and the half of the rest of the 

coefficients are at the second resolution level, and so on. This is not applicable for the lifting 

algorithm, but resolution levels can be artificially created. 

Observations are located on leaves at binary trees/dendrograms. The closest two 

objects are merged via branches to generate a node on a tree. In each branching, at most two 

nodes/leaves are merged, and final two nodes unite to generate the root of the tree. In this 

research, the root is assigned to the first resolution level, then the nodes/leaves in the first 

branch are assigned to the second resolution level. Until all leaves are assigned to a resolution 

level, the process is repeated.  

 

1.1.4 Backward lifting transform 

The forward transform is followed by the denoising stage by the universal threshold, then the 

transform should be reversed to obtain the denoised estimate of function values. �̂� of the 

function 𝑔. For 𝑘 = 𝑟 + 1, 𝑟 + 2, … , 𝑛, first scaling coefficients of 𝑖𝑡ℎ neighbor at stage k are 

updated by 

𝑐𝑘,𝑖 = 𝑐𝑘−1,𝑖 − 𝑏𝑖
𝑘𝑑𝑗𝑘

, 

then the scaling coefficients of the lifted node at stage k is predicted by 

𝑐𝑘,𝑗𝑘
= 𝑑𝑗𝑘

+ ∑ 𝑎𝑖
𝑘𝑐𝑘,𝑖𝑖∈ 𝐽𝑘

. 

 

1.2 Anomaly detection and classification stage 

The proposed anomaly detection algorithm is for hierarchically built trees with Ward’s 

linkage and with Euclidean distances. Ward’s linkage merges clusters which make minimum 

increase in the sum of squared errors. Ward’s linkage is consistent with the proposed node 

value by Bozkus and Barber (2023).  

 

1.2.1 One possible choice of a function value 
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To be able to apply the LOCAAT algorithm on dendrograms, neighborhood structure, branch 

lengths between nodes and a function value for each node are needed. Neighborhood structure 

and branch lengths between nodes are naturally achieved in the hierarchical clustering stage. 

A function value for each node is left to be able to apply the LOCAAT algorithm on 

dendrograms. Some of data sets may come with meaningful function values, but it is not 

always the case. Thus, a more general function value is needed which is applicable for all data 

sets. Bozkus and Barber (2023) proposed that one possible choice of a function value is 

compactness score which is defined as the average distance from the medoid of each cluster. 

Medoid of a cluster is set to the 𝐿1-median proposed by Vardi and Zhang (2000). 

 

1.2.2 Anomaly detection 

After defining function value for each node, LOCAAT algorithm can be applied to 

dendrograms. Compactness scores are assigned to nodes on the tree, and detail coefficients 

are obtained via LOCAAT algorithm. First 𝑛 detail coefficients belong to leaves; the next 𝑛 −

2 ones are for internal nodes, and the final detail coefficient is for the root.  

 In Section 1.1.1, predicted function values and detail coefficients are defined. If the 

detail coefficient of a node is negative, it means it is differentiated from its parent node; in 

other saying, the cluster at this node moves away from the cluster at its sibling node. If the 

detail coefficient of a node negatively increases, it has different features from other nodes that 

are assigned to the same cluster with it. To overcome with this issue, a threshold (𝛼) can be 

defined. Nodes having smaller detail coefficients than 𝛼 are labelled as nodes including 

anomaly points. Thus, the threshold 𝛼 is a lower boundary for detail coefficients of nodes. 

One possible choice of 𝛼 is 

𝛼 = 𝑄1 − |1,5 × (𝑄3 − 𝑄1)|,  

where 𝑄1 and 𝑄3 are the first and third quantile of detail coefficients, respectively, and | ⋅ | is 

for the absolute value. To be able to assign a cluster to a node, it needs to have at least three 

offspring. If any node having the detail coefficient less than 𝛼 includes at most two offspring, 

leaves under the node are defined as anomalies. Then, the points determined as anomalies are 

removed from the data set, and the tree is reconstructed with hierarchical clustering. The 

process is repeated until the number of anomalies found is zero.  

 

1.2.3 Detection of clusters 
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After anomalies are removed from the data, detail coefficients are assigned to artificial levels. 

Then, detail coefficients are denoised using the procedure defined in Section 1.1.2. If the 

denoised detail coefficient of the root is greater than zero, there is a significant divergence in 

the data set. Thus, there are possible clusters in the data set. All nodes on the tree are checked. 

If a node with all its sub-nodes have denoised detail coefficients less than or equal to zero, a 

cluster is assigned to the node.  

LOCAAT algorithm is not applied to the final 𝑟 nodes, so a special rule needs to be 

defined for non-lifted nodes (detail coefficients for non-lifted points are not computed, but 

their function values are updated because of their neighbors, and they are always positive 

definite). If denoised detail coefficients of all sub-clusters of a non-lifted node are less than or 

equal to zero, the ratio of branch lengths should be checked (since prediction and update 

weights are computed using branch lengths). For each non-lifted node, the following ratio is 

computed: 

(sum of branch lengths from their child nodes)

(sum of branch lengths from their first degree neighbors)
. 

If the defined ratio of a non-lifted node is greater than 2/3, its sub-clusters are considered far 

enough from each other, so the clusters are assigned to child nodes of the non-lifted node. 

Otherwise, a cluster is assigned to the non-lifted node. Then the backward transformation is 

applied to obtain denoised function values. Anomaly detection and classification by the 

LOCAAT algorithm is called as “LiftOut”.  

 

2 Results  

In this section, the performance of the LiftOut and DBSCAN are compared using a real-world 

example (due to page limit, only the result of real-world data is presented). Hierarchical 

clustering with Ward’s linkage is applied on Euclidean distances. The MinPts parameter of 

DBSCAN is set to the recommended choice, 5. The proper choice of 𝜖 parameter is found as 

1,5 by checking the k-nearest-neighborhood plot as suggested by Hahsler et al. (2019). 

DBSCAN is available in R in dbscan package (Hahsler et al., 2019). The k-nearest-

neighborhood plot is also obtained using kNNdist() function in dbscan library.  

 

Old Faithful geyser data set 

Azzalini and Bowman (1990) released a data set which was collected from the Old Faithful 

geyser in Yellowstone national park in Wyomind, USA. In this data set, there are two 

measurements: the waiting time between two consequent successful eruptions (labelled as 
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waiting) and duration of eruption (labelled as eruptions). The data set includes the 

measurements on 272 eruptions occurred in 1-15 August in 1985. The faithful data is 

available in R. Azzalini and Bowman (1990) and some other researchers who studied this data 

set suggest that there are two classes in faithful data. The scatter plot of faithful data is given 

in Fig. 1.  

 

 Fig. 1: Scatter plot of Old Faithful geyser data 

 

Source: Author 

There are two obvious classes in the plot, but groups are not well separated and the 

dispersion of groups are high. Thus, detection of classes is not an easy task for the available 

classification techniques in the literature. After removing anomalies, classes may be 

differentiated easier by the classification techniques.  

LiftOut and DBSCAN are applied to the Old Faithful geyser data, and both algorithms 

detect some objects as anomalies. Different classes and anomalies detected by LiftOut and 

DBSCAN are colored with different colors (Fig. 2). Anomalies are colored as black points. 

DBSCAN algorithm divides the data into three groups with some anomalies. DBSCAN 

creates a third group which includes the intersection points of two main groups. LiftOut, 

however, finds two main groups and some anomalies. The number of anomalies found in 

LiftOut (25 points) is higher than DBSCAN (10 points).  
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 Fig. 2: Classification scheme found by LiftOut and DBSCAN algorithm 

 

Source: Author 

 

Conclusion  

In this study, an alternative anomaly detection method is presented on denoised hierarchically 

built trees, and the classification scheme is found after removing anomalies. The proposed 

algorithm is called as LiftOut. A real-world example is presented to test the performance of 

the algorithm, and its performance is compared with the DBSCAN algorithm. DBSCAN 

algorithm divides the data set into more groups than the LiftOut. It forms another group from 

some of the data points labelled as anomalies by the LiftOut algorithm. LiftOut assigns 

observations into two groups (suggested number of groups in early researches) after removing 

anomalies. We should remember that DBSCAN algorithm needs user defined parameters, so 

the performance of the algorithm varies with different choice of parameters. The wrong 

choice of parameters decreases the performance of the DBSCAN, so the proper choice of 

parameters needs to be found before applying the algorithm itself. Both the anomaly detection 

and the classification part of the LiftOut algorithm works in high performances. However, 

LiftOut tempts to over clean the data.  
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