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EXTENDED INVERSE GAMMA DISTRIBUTION: 

DEFINITION, PROPERTIES, AND APPLICATIONS 

Talha Arslan   

 

Abstract 

In this study, the inverse Gamma (IGam) distribution is extended to have an 𝛼-monotone 

density, and the resulting distribution is called α-monotone inverse Gamma distribution 

(𝛼IGam). The density function of the αIGam distribution is obtained as a scale-mixture between 

the IGam and Uniform(0,1) distributions. Some properties of the αIGam and its sub-models are 

expressed. In parameter estimations of the 𝛼IGam distribution, the maximum likelihood (ML) 

method is used, and a small Monte-Carlo simulation study is conducted to show the 

performances of the ML estimates of the parameters. In the application part of the study, real 

data sets, which include the survival time from two groups of patients suffering from head and 

neck cancer disease, are modeled by using the 𝛼IGam distribution. The modeling capability of 

the αIGam distribution is compared with its rivals by using the well-known criteria such as 

log 𝐿, Bayesian information criterion, root mean squares error, and coefficient of 

determination. Results show that the αIGam distribution is preferable over the IGam 

distribution and its rivals in modeling data from the patients which were treated only 

radiotherapy. It can be concluded that αIGam distribution can be considered as an alternative 

to its rivals in modeling the lifetime data.  
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Introduction 

Statistical distributions are used for modeling the data in various areas of science such as 

chemistry, medicine, engineering and so on. For example, the gamma, Weibull and inverse 

Gaussian distributions are commonly used for modeling the lifetime data in reliability studies. 

In this context, Lin et al. (1989) considered the distribution of random variable 𝑋 = 𝑍−1, where 

𝑍 follows the gamma distribution, as an alternative to the log-normal and inverse Gaussian 

distributions in modeling lifetime data.  
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The distribution of 𝑋 is called inverse gamma (IGam) distribution and has the 

probability density function (pdf) 

𝑓𝑋(𝑥; 𝛽, 𝜎) =
𝜎𝛽

Γ(𝛽)
𝑥−𝛽−1𝑒−𝜎𝑥−1

;   𝑥 > 0 (1) 

and cumulative distribution function (cdf) 

𝐹𝑋(𝑥; 𝛽, 𝜎) = Γ(𝜎𝑥−1, 𝛽). (2) 

Here, 𝛽 > 0 and 𝜎 > 0 are shape and scale parameters, respectively.  Also, Γ(⋅) is the gamma 

function and Γ(⋅,⋅) denotes the upper incomplete gamma function defined as  

Γ(𝑤, 𝑎) =
1

Γ(𝑎)
∫ 𝑢𝑎−1𝑒−𝑢𝑑𝑢

∞

𝑤

. 

Hereinafter, 𝑋 ∼ IGam(𝛽, 𝜎) is used for representing a random variable 𝑋 having the pdf given 

in (1). The r-th moment of the IGam distribution is 

𝐸[𝑋𝑟] = 𝜎𝑟
Γ(𝛽 − 𝑟)

Γ(𝛽)
;  𝛽 > 𝑟. (3) 

Lin et al. (1989) stated that even though the IGam distribution becomes inverse 

exponential distribution when 𝛽 = 1, the IGam distribution may not be superior over the 

inverse exponential distribution when simplicity taken into account. Recently, Mead (2015) 

introduced generalized version of the IGam distribution that includes many distributions as a 

sub-model. In the literature, several methods are proposed to improve distribution’s modeling 

performance or obtain new distribution having better modeling capacity than the exist ones. 

Lee et al. (2013) provided methods used for generating families of univariate continuous 

distribution. In literature, there exist many studies including generalized/extended version of 

the popular statistical distribution; see for example Arslan (2023) and references therein.  

Let we have a component and 𝑋 be a random variable including its lifetime under 

optimum conditions. It is clear that the lifetime of the component will be reduce under a stress. 

Therefore, random variable 𝑇 including its lifetime under stress can be defined as 

𝑇 = 𝑋 × 𝑌
1
𝛼 . (4) 

Here, 𝑋 and 𝑌 are independent random variables having distributions on ℝ+ and Uniform(0,1), 

respectively. Jones (2020) stated that the random variable 𝑇 has 𝛼-monotone density; therefore, 

such distribution can be called 𝛼-monotone distribution.   

In this study, the inverse Gamma (IGam) distribution is extended to have an 𝛼-monotone 

density, and the resulting distribution is called α-monotone inverse Gamma distribution 

(𝛼IGam). Some properties of the 𝛼IGam and its sub-models are expressed. The maximum 



The 17th International Days of Statistics and Economics, Prague, September 7-9, 2023 

 

3 
 

likelihood (ML) method is considered for estimating the parameters of the 𝛼IGam distribution, 

and a small Monte-Carlo simulation study is conducted to show the performances of the ML 

estimates of the parameters. In the application section, modeling capability of the 𝛼IGam 

distribution is compared with its rivals by using the information criteria values (log 𝐿, Bayesian 

information criteria (BIC)) and goodness-of-fit statistics (root mean squares error (RMSE) 

and coefficient of determination (R2)). 

 

 1 The 𝜶-monotone inverse Gamma distribution 

In this section, the pdf and cdf of the 𝛼IGam distribution is given. Also, some tractable 

properties of the 𝛼IGam distribution and its sub-models are provided. Then, the ML method is 

used for estimating the parameters 𝛼, 𝛽 and 𝜎 of the 𝛼IGam distribution.  

 

1.1 The pdf and cdf of the 𝜶IGam distribution 

Let 𝑋 be a random variable having pdf given in (1) and random variable 𝑌 follows the 

Uniform(0,1) distribution. Then, random variable 𝑇 defined in (4) has the pdf 

𝑓𝑇(𝑡; 𝛼, 𝛽, 𝜎) = 𝛼𝜎−𝛼
Γ(𝛼 + 𝛽)

Γ(𝛽)
𝑡𝛼−1Γ(𝑡−1; 𝛼 + 𝛽, 𝜎);   𝑡 > 0 (5) 

and the cdf 

𝐹𝑇(𝑡; 𝛼, 𝛽, 𝜎) = 𝜎−𝛼
Γ(𝛼 + 𝛽)

Γ(𝛽)
𝑡𝛼Γ(𝑡−1; 𝛼 + 𝛽, 𝜎) + Γ(𝜎𝑥−1, 𝛽) (6) 

where 𝛼 > 0 and 𝛽 > 0 are the shape parameters, and 𝜎 > 0 is the scale parameters. Here, 

Γ(𝑡−1; 𝛼 + 𝛽, 𝜎) =
𝜎𝛼+𝛽

Γ(𝛼 + 𝛽)
∫ 𝑢𝛼+𝛽−1𝑒−𝜎𝑢

𝑡−1

0

𝑑𝑢. 

Hereinafter, 𝑇 ∼ 𝛼IGam(𝛼, 𝛽, 𝜎) is used for representing a random variable 𝑇 having the pdf 

given in (5). The plots for the pdf and cdf of the 𝛼IGam distribution for certain values of the 

parameters are shown in Figure 1.  

The r-th moment of the 𝛼IGam distribution is  

𝐸[𝑇𝑟
] = 𝐸[𝑋𝑟

] × 𝐸 [𝑌
𝑟
𝛼] = 𝜎𝑟

Γ(𝛽 − 𝑟)

Γ(𝛽)

𝛼

𝛼 + 𝑟
 . (7) 

Therefore, random variable 𝑇 following the 𝛼IGam distribution has the square of the coefficient 

of variation 

𝑉[𝑇]

𝐸[𝑇]2
=

1

𝛼(𝛼 + 2)
[
(𝛼 + 1)2

(𝛽 − 2)
+ 1] . 
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Fig. 1: Shapes of the pdf and cdf of the 𝜶IGam distribution for certain parameter settings 

 

 

1.2 The properties of the 𝜶IGam distribution 

The 𝛼IGam distribution has some tractable properties given below. 

a. Let 𝑇|𝑌 = 𝑦 ∼ IGam(𝛽, 𝜎𝑦^(1/𝛼)) and 𝑌 ∼ Uniform(0,1). Then, 

𝑓𝑇
(𝑡; 𝛼, 𝛽, 𝜎) = ∫ 𝑓𝑋 (𝑡; 𝛽, 𝜎𝑦

1
𝛼) 𝑓𝑌(𝑦)𝑑𝑦

1

0

= 𝛼𝜎−𝛼
Γ(𝛼 + 𝛽)

Γ(𝛽)
𝑡𝛼−1Γ(𝑡−1; 𝛼 + 𝛽, 𝜎).

(8) 

Therefore, the pdf of the 𝛼IGam distribution can be expressed as a scale-mixture 

between the IGam and Uniform(0,1) distributions. 

b. The 𝛼IGam distribution has an 𝛼-monotone density since its pdf satisfies the condition  

𝑑

𝑑𝑡
(log 𝑓𝑇) ≤

𝛼 − 1

𝑡
 . 

c. From the stochastic representation given in (4), the 𝛼IGam(𝛼, 𝛽, 𝜎) converges to the 

IGam(𝛽, 𝜎) when 𝛼 → ∞; i.e., lim
𝛼→∞

𝑓𝑇(𝑡; 𝛼, 𝛽, 𝜎) = 𝑓𝑋(𝑡; 𝛽, 𝜎).  

The proofs for the corresponding properties can be provided by the author upon request. 

 

1.3 The sub-models of the 𝜶IGam distribution 

The 𝛼IGam distribution includes the distributions given below as a sub-model. 

a. If 𝛽 = 1, the pdf of the 𝛼IGam becomes 𝛼-monotone inverse exponential distribution, 

obtained by Arslan (2021), and has the following pdf 

𝑓𝑇(𝑡; 𝛼, 1, 𝜎) = 𝛼2𝜎−𝛼Γ(𝛼)𝑡𝛼−1Γ(𝑡−1; 𝛼 + 1, 𝜎);   𝑡 > 0, 𝛼 > 0, 𝜎 > 0. 
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b. If 𝛽 = 0.5 and 𝜎 = 0.5𝑐, the pdf of the 𝛼IGam becomes 𝛼-monotone Levy distribution 

and has the following pdf 

𝑓𝑇(𝑡; 𝛼, 0.5, 0.5𝑐) = 𝛼(0.5𝑐)−𝛼
Γ(𝛼 + 0.5)

Γ(0.5)
𝑡𝛼−1Γ(𝑡−1; 𝛼 + 0.5,0.5𝑐);   𝑡 > 0, 𝛼 > 0, 𝑐 > 0. 

c. If 𝜎 = 0.5, the pdf of the 𝛼IGam becomes 𝛼-monotone inverse chi-squared distribution 

and has the following pdf 

𝑓𝑇(𝑡; 𝛼, 𝛽, 0.5) = 𝛼0.5−𝛼
Γ(𝛼 + 𝛽)

Γ(𝛽)
𝑡𝛼−1Γ(𝑡−1; 𝛼 + 𝛽, 0.5);   𝑡 > 0, 𝛼 > 0, 𝛽 > 0. 

 Note that when 𝛼 → ∞ 𝛼-monotone inverse Exponential, 𝛼-monotone Levy, and 𝛼-monotone 

inverse chi-squared distributions converge to the inverse Exponential, Levy, and chi-squared 

distributions, respectively. 

The proofs for the obtaining the pdf of the corresponding sub-models can be provided by 

the author upon request. 

 

1.4 The ML estimation of the parameters of the 𝜶IGam distribution 

The ML estimation method, which is based on the maximization of the log-likelihood (log 𝐿) 

function, is used to estimate the parameters of the 𝛼IGam distribution. The log 𝐿 function of 

the 𝛼IGam distribution is 

log 𝐿 (𝛼, 𝛽, 𝜎; 𝑡) =  𝑛 log 𝛼 − 𝑛𝛼 log 𝜎 + 𝑛 log(Γ(𝛼 + 𝛽)) − 𝑛 log(Γ(𝛽))

+(𝛼 − 1) ∑ log 𝑡𝑖

𝑛

𝑖=1

+ ∑ log (Γ(𝑡𝑖
−1; 𝛼 + 𝛽, 𝜎))

𝑛

𝑖=1

.
(9) 

The ML estimates of the parameters 𝛼, 𝛽, and 𝜎 are the points in which the log 𝐿 

function of the 𝛼IGam distribution attains its maximum. Here, optimization tool “fminunc”, 

which is available in software MATLAB2015b, is used to find the ML estimates of the 

parameters 𝛼, 𝛽, and 𝜎, i.e., 𝛼̂, 𝛽̂, and 𝜎̂.  

Efficiencies of the 𝛼̂, 𝛽̂, and 𝜎̂ are shown via a small Monte-Carlo simulation study that 

can be considered as an example. In the simulations, two different parameter settings are 

considered for the different sample sizes (n=50, 100, 200) and all simulations are conducted for 

1,000 Monte-Carlo runs. For each generated sample, the ML estimates of the parameters were 

obtained and then the mean, variance and mean squared error (MSE) of the parameter estimates 

were calculated; see Table 1 for the results. Note that to better understanding the behaviors of 

the ML estimates of the corresponding parameters, the Monte-Carlo simulation conducted in 

this study should be extended by considering a wide range of the parameter space. 
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Tab. 1: The Monte-Carlo simulation results  

 𝛼 = 0.5, 𝛽 = 0.3, 𝜎 = 1.0 𝛼 = 1.5, 𝛽 = 0.3, 𝜎 = 1.0 

n  Mean Variance MSE Mean Variance MSE 

50 

𝛼̂ 0.5933 0.0848 0.0935 1.6036 1.3111 1.3219 

𝛽̂ 0.3214 0.0069 0.0074 0.3293 0.0050 0.0059 

𝜎̂ 1.4941 6.1892 6.4333 1.6558 2.0746 2.5047 

100 

𝛼̂ 0.5511 0.0414 0.0440 1.7528 1.0051 1.0691 

𝛽̂ 0.3084 0.0024 0.0024 0.3168 0.0023 0.0026 

𝜎̂ 1.1285 0.5990 0.6155 1.2046 0.4448 0.4867 

200 

𝛼̂ 0.5184 0.0062 0.0066 1.6404 0.4705 0.4902 

𝛽̂ 0.3063 0.0012 0.0013 0.3039 0.0011 0.0011 

𝜎̂ 1.0941 0.2612 0.2701 1.0913 0.1279 0.1362 

It can be seen from the Table 1 that the ML estimates for each parameter be closed to 

the corresponding true parameter value and variances for the parameter estimates decrease 

when sample size increases. Also, the MSE values for each parameter decrease when sample 

size increases as expected.  

               

2 Application 

In this section two data sets, proposed by Efron (1988), are modeled via the IGam and 𝛼IGam 

distributions. The data sets include the survival time from two groups of patients suffering from 

head and neck cancer disease. The patients belong to first group were treated only radiotherapy 

(RT) and the patients in second group were treated combined radiotherapy and chemotherapy 

(RT+CT); see also Sharma et al. (2015).  

Note that Alakus and Erilli (2020), Iranmanesh et al. (2018) and Unal et al. (2018) 

modeled these data sets by using Weibull-Pareto, inverted gamma and alpha power inverted 

exponential (APIE) distributions, respectively. The corresponding data are given follows: 

Data (RT): 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 83, 84, 

91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218, 

225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417. 

Data (RT+CT): 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 

78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 

194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776. 
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 The ML method is used for estimating the parameters of the IGam and 𝛼IGam 

distributions. The parameter estimates, log 𝐿, BIC, RMSE and R2 values of the IGam and 

𝛼IGam distributions are tabulated in Table 2.  

Tab. 2: The modeling results for the corresponding data sets 

Data sets Distributions 𝛼̂ 𝛽̂ 𝜎̂ -log 𝐿 BIC RMSE R2 

RT 
IGam ---  0.7037 38.2319 333.2191 674.2625 0.1033 0.8368 

𝛼IGam 0.9683 2.3171 661.9137 322.3603 656.4566 0.0334 0.9866 

RT+CT 
IGam --- 1.1234 86.1679 279.3948 566.3580 0.0430 0.9762 

𝛼IGam 71.3642 1.1236 87.4078 279.3925 570.1375 0.0430 0.9762 

 

It is clear from Table 2 that the 𝛼IGam distribution has better modeling performance 

than the IGam distribution when survival times of patients who were treated only RT are 

considered. Note that the 𝛼IGam distribution models the corresponding data better than the 

APIE distribution proposed by Unal et al. (2018) since it has smaller the BIC and RMSE, and 

higher the log 𝐿 and R2 values. The fitting performance of the 𝛼IGam distribution for RT data 

is also illustrated graphically by Figure 2. 

Fig. 2: The pdf and cdf plots of the 𝜶IGam with histogram and empirical cdf of RT data 

 

However, the 𝛼IGam and IGam distributions perform more or less the same modeling 

for the case RT+CT since the 𝛼IGam distribution with 𝛼̂ = 71.3642  converges to the IGam 

distribution. This result is also in agreement with the property of the 𝛼IGam distribution given 

in subsection 1.2 – c. Therefore, a graphical illustration of the fitting performance of the 𝛼IGam 

distribution for RT+CT data is not provided here.  
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Note that expected value of the 𝛼IGam distribution based on the parameter estimates 

for the RT and RT+CT data sets, i.e., expected lifetime of patients who treated RT and RT+CT, 

are 247.2404 and 697.2701, respectively. It may conclude that combining the CT with RT 

changes the distribution of the survival time who suffering from head and neck cancer disease 

and the effect of this result should be investigated further by the practitioners. 

 

Conclusion 

In this study, the 𝛼IGam distribution is obtained and some of its properties are shown. The ML 

is used for estimating the parameters of the 𝛼IGam distribution and the Monte-Carlo simulation 

study is carried out the show the performances of the ML estimates of the parameters.  

The 𝛼IGam distribution has two shape parameters; therefore, its skewness and kurtosis 

measures may take values in a broader range than the IGam counters and it makes 𝛼IGam 

preferable over the IGam distribution.  

In the application part, two real data sets are modeled by using the IGam and  𝛼IGam 

distributions. The modeling performances of the IGam and 𝛼IGam distributions are compared 

by considering their log 𝐿, BIC, RMSE and R2 values. Modeling result show that the 𝛼IGam 

distribution can be an alternative to the IGam distribution in modeling purpose.  
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