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ON THE EXISTENCE OF CORRIDORS OF STABILITY  

IN A LIQUIDITY-GROWTH MODEL 
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Abstract 

In the paper, a two-dimensional nonlinear dynamic model describing the development of 

liquidity and profit of a firm around its equilibrium is studied. There is constructed a smooth 

control function of the model enabling the birth of double cycles around the model´s 

equilibrium. The inner cycle is unstable, the outer one is stable. The cycles determine two 

corridors of stability. The first corridor of stability lies between the equilibrium of the model 

and the inner cycle, the second one lies between the inner cycle and the outer cycle. The gained 

results give a supplement to an open problem set up by Semmler and Sieveking in their paper 

(Semmler and Sieveking (1993)) with respect to how the solutions of the model behave in the 

space between its equilibrium and the cycle which is partly pictured in Figure 2. The achieved 

results are illustrated by a numerical simulation. 
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Introduction  

In the paper, a two-dimensional nonlinear dynamic model describing the development of 

liquidity and profit of a firm around its equilibrium is studied. These notions are important not 

only for firms indicating their economic conditions, but also for banks giving them an important 

information on the credit assessment of firms. There is constructed a control function of the 

model enabling the birth of double cycles around the model´s equilibrium. It is shown that the 

cycles determine two corridors of stability. The first corridor of stability lies between the 

equilibrium of the model and the inner cycle, the second one lies between the inner cycle and 

the outer cycle. The concept of corridor stability was originally proposed by Leijonhufvud 

(Leijonhufvud (1973)) to describe the reaction of a market economy to a harmful income shock. 

He probably had in his mind a small domain around an important point, for example around the 

equilibrium of a model, describing some considered economic processes, with the property that 
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solutions started in this domain will approach in time the equilibrium. As Leijonhufvud 

described this concept rather vaguely, and because economists thought that there was a limited 

ability of any system to withstand larger deviation of the initial values from the equilibrium, 

this concept attracted rather small attention. Nowadays, this concept comes back to the attention 

of economists (see for example Cardim de Carvalho (2016)). Economists, utilizing modern 

mathematical technics, have possibilities not only to study nonlinear dynamic models enabling 

the birth of cycles, but also at the same time a possible arise of corridors of stability. The 

remaining of this paper is arranged as follows. 

Section 1 talks about the motivation to study the topic mentioned in introduction. In 

Section 2 a model investigated in this paper is introduced and performed its complete analysis. 

Section 3 presents a numerical simulation of a result achieved in this paper. Chapter 4 is devoted 

to final notes concerning reached results and indicates their possible deepening and expansion.   

 

1 Motivation 

In this section we recall some results which were gained by Semmler and Sieveking in their 

paper Semmler and Sieveking (1993) which motivated us to deal with this topic. They can be 

useful also at comparing them with ours results reached in the present paper.  

Semmler and Sieveking constructed on the basis of Lotka-Volterra predator-prey model 

a nonlinear dynamic model describing the development of liquidity  and profit r  of a firm of 

the form 

𝜆̇ = (𝛼 − 𝛽𝑟 − 𝜀1𝜆 − ℎ(𝜆, 𝑟))𝜆 

                                             𝑟̇ = (−𝛾 + 𝛿𝜆 − 𝜀2𝑟)𝑟                                                       (1) 

 

with parameters 1 2, , , , ,      and a control function ( ), .h r  Describing the basic properties 

of the control function ( ),h r  by only verbal specification they managed to find out that model 

(1) together with other specific conditions on the control function enables the existence of 

cycles. But the authors of the paper were not able to illustrate their theoretical results by suitable 

numerical simulations without a smooth explicit form of the control function ( ), .h r  In their 

numerical simulations they worked only with a non-smooth control function  

 

                                     ℎ(𝜆, 𝑟) = 𝜈[𝑚𝑎𝑥(𝜇 − 𝜆, 0) .𝑚𝑎𝑥(𝜑 − 𝑟, 0)]
1

2,                                 (2)   

 

which is non smooth and therefore could not be used as a control function in their model. They 

used at their numerical simulations the values of parameter 𝛼 = 0.1, 𝛽 = 0.6, 𝛾 = 0.07, 𝛿 =
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0.7,  𝜀1 = 0.045, 𝜀2 = 0.078which give considering the cash ratio liquidity   the economically 

relevant equilibrium values 𝜆∗ = 0.12, 𝑟∗ = 0.15. They claim  that for smaller values of the  

coefficient   from (2) the trajectories of model (1) converge to the equilibrium 𝜆∗ = 0.12, 𝑟∗ =

0.15 for any initial condition.  They depicted this statement by a numerical simulation for  𝜈 =

0.2 in Fig.1. Further,  they claim that for bigger values of coefficient  , for example 0.6, =  

the trajectories of model (1) still converge to the equilibrium 𝜆∗ = 0.12, 𝑟∗ = 0.15 for smaller 

initial conditions, but for larger initial condition, i.e.,  for further departure of   and r  from 

the equilibrium values, however, model (1) becomes unstable. They suppose that its trajectories 

finally approach some limit cycle. But they were not able to illustrate this cycle with a suitable 

numerical simulation. On the other hand, for initial conditions, farthest away from the 

equilibrium the corresponding trajectories approach a half-limit cycle from the outside. This 

situation is illustrated in their paper for 0.6 =  by Fig.2. The behaviour of trajectories in the 

space between the equilibrium ,r  and this half-limit cycle was left open by the authors. 

 

                             Fig. 1: 0.2 =                                            Fig. 2: 0.6 =     

                         
Source: Semmler, W. & Sieveking, M., 1993, p. 197, p. 199.  

 

Our aim in the present paper is to find out how the solutions of a model of the type (1) 

may behave in the space between the equilibrium 𝜆∗, 𝑟∗and this half-limit cycle.   

 

 

2 Model 

In this section we introduce and study model 

                                                   𝜆̇ = (𝛼 − 𝛽𝑟 − 𝜀1𝜆 − ℎ(𝜆))𝜆 

                                                      𝑟̇ = (−𝛾 + 𝛿𝜆 − 𝜀2𝑟)𝑟,                                                    (3) 

                                                                                           

where 1 2, , , , ,       are positive parameters and a control function ( )h   has the form 
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                                    ℎ(𝜆) = 𝑘 (𝜆 −
𝛾

𝛿
) − 𝑞(𝜆 − 𝜆𝑠)

3 − 𝑞1(𝜆 − 𝜆𝑠)
5,                         (4) 

where ,k q  and 1q  are parameters, and 

                                                 𝜆𝑠 =
𝛽𝛾𝛿+𝑘𝛾𝜖2+𝛼𝛿𝜖2

𝛿(𝛽𝛿+(𝑘+𝜖1)𝜖2)
,  𝑟𝑠 =

𝛼𝛿−𝛾𝜖1

𝛽𝛿+(𝑘+𝜖1)𝜖2
                               (5) 

are solutions of the equations  𝛼 − 𝛽𝑟 − 𝜀1𝜆 − 𝑘 (𝜆 −
𝛾

𝛿
) = 0,  −𝛾 + 𝛿𝜆 − 𝜀2𝑟 = 0,  which 

means considering the structure of the control function (4) that 𝜆𝑠 and 𝑟𝑠are at the same time 

the equilibrium values of model (3). The control function ℎ(𝜆)depending only on   is a smooth 

function and therefore can be used as a control function for the model (3) when studying local 

bifurcation. 

We shall study the qualitative properties of model (3) utilizing the Bautin bifurcation 

theory. To apply the Bautin bifurcation theory it is required to perform the following steps (see 

Kuznetsov (2004)):  

1. to find conditions on the parameters of model (3) which guarantee that the Jacobian matrix 

of model (3) has a pair of purely imaginary eigenvalues. 

It can be shown using the standard procedure (see for example Wiggins (1990) or 

Kuznetsov (2004)) that the Jacobian matrix of model (3) is traceless if and only if 

 

𝛼 = 𝛼0 = −
𝛾

𝛿

𝑘(𝛽𝛿 + 𝜀1𝜀2) + 𝑘2𝜀2 + 𝛿𝜀1(𝛽 − 𝜀2)

(𝑘 + 𝛿 + 𝜀1)𝜀2
. 

In the whole paper we assume that 

                                        𝑘 < 0, 𝑘 + 𝜀1 < 0, 𝑘 + 𝛿 + 𝜀1 > 0.                                             (6) 

Then for small enough 𝜀1, 𝜀2 we have 𝛼0 > 0 and the Jacobian matrix of model (3) has the pair 

of purely imaginary eigenvalues 

±𝑖𝜔0,  𝜔0 =
𝛾√−𝑘 − 𝜀1√𝛽𝛿 + (𝑘 + 𝜀1)𝜀2

(𝑘 + 𝛿 + 𝜀1)√𝜀2
. 

2. to translate the equilibrium 𝐸 = (𝜆𝑠, 𝑟𝑠) into the origin 𝐸0 = (0,0) and the bifurcation value 

𝛼0 into zero by shifting 

𝑥1 = 𝜆 − 𝜆𝑠, 𝑥2 = 𝑟 − 𝑟𝑠, 𝜇 = 𝛼 − 𝛼0. 

We gain the system 
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                                                             𝑥̇ = (
𝑥̇1
𝑥̇2
),                                                           (7) 

where 

𝑥̇1 = −
1

(𝑘 + 𝛿 + 𝜖1)(𝛽𝛿 + (𝑘 + 𝜖1)𝜖2)
(𝑘𝑥1 − 𝑞𝑥1

3 − 𝑞1𝑥1
5 + 𝑥2𝛽 + 𝑥1𝜖1) 

(𝛽𝛾𝛿 + 𝑥1𝛽𝛿(𝛿 + 𝜖1) + 𝑘2𝑥1𝜖2 + 𝛾𝜖1𝜖2 + 𝑘𝑥1(𝛽𝛿 + (𝛿 + 2𝜖1)𝜖2) + 𝑘𝜖2(𝛾 + 𝜇)

+ (𝛿 + 𝜖1)𝜖2(𝑥1𝜖1 + 𝜇)), 

𝑥̇2

=

(𝑥1𝛿 − 𝑥2𝜖2) (−𝛾𝜖1 + 𝑥2(𝛽𝛿 + (𝑘 + 𝜖1)𝜖2) −
𝛾(𝛿𝜖1(𝛽 − 𝜖2) + 𝑘2𝜖2 + 𝑘(𝛽𝛿 + 𝜖1𝜖2))

(𝑘 + 𝛿 + 𝜖1)𝜖2
+ 𝛿𝜇)

𝛽𝛿 + (𝑘 + 𝜖1)𝜖2
. 

3. to transform system (7) by the substitution 

(
𝑥1
𝑥2
) = 𝑀 (

𝑦1
𝑦2
), 

where the matrix 𝑀 consists of the eigenvectors of the Jacobian matrix of system (7) at 𝑥1 =

0, 𝑥2 = 0, 𝜇 = 0, to the form with the Jordan linear approximation matrix 

𝑦̇ = 𝐴𝑦 + 𝐺, 

𝑦 = (
𝑦1
𝑦2
) ,  𝐴 = (

𝜎(𝜇) 0

0 𝜎̄(𝜇)
) ,  𝐺 = (

𝐺1
𝐺2
) ,  𝐺1 = ∑

1

𝑘! 𝑙!
2≤𝑘+𝑙≤5

𝑔𝑘𝑙(𝜇)𝑥1
𝑘𝑥2

𝑙 + 𝑂(|𝑥|6), 

𝜎(𝜇) = 𝜂(𝜇) + 𝑖𝜔(𝜇), 𝜂(0) = 0,𝜔(0) = 𝜔0, 𝜎̄(𝜇) = 𝜂(𝜇)-i𝜔(𝜇), 𝐺2 = 𝐺̄1, 

where 

                                      𝜂(𝜇) =
−𝑘2𝜖2

3/2
𝜇−2𝑘(𝛿+𝜖1)𝜖2

3/2
𝜇−(𝛿+𝜖1)

2𝜖2
3/2

𝜇

2(𝑘+𝛿+𝜖1)√𝜖2(𝛽𝛿+(𝑘+𝜖1)𝜖2)
                            (8)     

 𝜔(𝜇) = (−√(4𝛾2(𝑘 + 𝜖1)(𝛽𝛿 + (𝑘 + 𝜖1)𝜖2)
3 + 4𝛾(𝑘 − 𝛿 + 𝜖1)(𝑘 + 𝛿 + 𝜖1)𝜖2 

                    (𝛽𝛿 + (𝑘 + 𝜖1)𝜖2)
2𝜇 + (𝑘 + 𝛿 + 𝜖1)

2𝜖2
2(−4𝛽𝛿2 + (𝑘 − 𝛿 + 𝜖1)

2𝜖2)𝜇
2))/ 

                                         2(𝑘 + 𝛿 + 𝜖1)√𝜖2(𝛽𝛿 + (𝑘 + 𝜖1)𝜖2), 
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and the symbol ( )  means the complex conjugate expression to .  As the expressions 1 2,G G  are 

complex conjugate forms, we will further deal only with the form 1.G  In our case it is not necessary 

to derive the Bautin normal form 

𝑢̇ = (𝛽1 + 𝑖)𝑢 + 𝛽2𝑢|𝑢|
2 + 𝑠𝑢|𝑢|4 + 𝑂(|𝑢|6), 

which gives by its solution at 𝑠 = −1 the bifurcation diagram shown in Fig. 3. 

Fig. 3: Bifurcation diagram of the Bautin normal form 

 

Source: Kuznetsov, Yu. A., 2004, p. 314. 

 

On this bifurcation diagram there are pictured all possible qualitative behaviours of system (7)´s  

solutions around its equilibrium with respect to the values of parameters 𝛽1 and 𝛽2. Taking into 

account our aim, we see that only the behaviour of solutions corresponding to the pairs (𝛽1, 𝛽2) 

lying in the space denoted by number 3 which is determined by  the arc T  of a parabola and 

the positive part of the parameter 𝛽2. Hence, for our purpose it will be sufficient to derive only 

Lyapunov coefficients 𝑙1, 𝑙2 from the relation (8.20)  in Kuznetsov (2004)  and to determine the 

Bautin point 𝐵 consisting of two bifurcation values. The first bifurcation value is the value 𝛼0 

which was shifted  into the value 𝜇 = 0. The second bifurcation value should be such that both 

bifurcation values creating the Bautin point 𝐵 guarantee that 𝑙1(𝐵) = 0 and 𝑙2(𝐵) ≠ 0. A 

suitable candidate for this role is parameter 𝑞. Lyapunov coefficient 𝑙1(𝜇, 𝑞) is given by the 

relation  
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                                          𝑙1(𝜇, 𝑞) =
𝑅𝑒  𝑐1(𝜇,𝑞)

𝜔(𝜇,𝑞)
− 𝜂(𝜇, 𝑞)

𝐼𝑚  𝑐1(𝜇,𝑞)

𝜔2(𝜇,𝑞)
,                                   (9) 

where 

                                               𝑅𝑒   𝑐1(𝜇, 𝑞) =
3𝑞

2

𝛽𝛾𝜀2√𝛽𝛿+(𝑘+𝜀1)𝜀2

𝛿(𝑘+𝜀1)(𝑘+𝛿+𝜀1)
.                                       (10) 

We get from (8) that 𝜂(𝜇 = 0) = 0 and from (10) that 𝑅𝑒   𝑐1(𝜇, 𝑞) = 0 at 𝑞 = 0. Hence we 

can use the value 𝑞 = 0 for the second bifurcation value and the point 𝐵 = (𝜇 = 0, 𝑞 = 0) as 

the Bautin bifurcation point because 𝑙1(𝐵) = 0. 

Let us calculate the second Lyapunov coefficient 𝑙2(𝐵) which is given in Kuznetsov (2004) by 

the formula (8.23) consisting of the coefficients 𝑔𝑘𝑙(𝜇) of the Taylor expansion of the function 𝐺1. As 

all the coefficients 𝑔𝑘𝑙(𝜇) of the third and the fourth degree are zeros at 𝜇 = 0 and  𝑞 = 0, we get from 

the formula (8.23) the expression 

12 𝑙2(𝐵) =
1

𝜔0
𝑅𝑒   𝑔32 +

1

𝜔0
4
{𝐼𝑚[𝑔11𝑔̄02(𝑔̄20

2 ) − 3𝑔̄20𝑔11 − 4𝑔11
2 ] + 

    𝐼𝑚(𝑔20𝑔11) [3 𝑅𝑒   (𝑔20𝑔11) − 2|𝑔02|
2]}, 

where all the𝑔𝑘𝑙 are evaluated at the point 𝐵 = (𝜇 = 0, 𝑞 = 0). We get 

𝑙2(𝐵) = {
−1

12
𝜖2
5/2

(−60𝑞1(𝛽𝛿 − √−𝑘 − 𝜖1𝜖2)(𝛽𝛿 + 2(𝑘 + 𝜖1)𝜖2)
2((𝑘 + 𝜖1)√𝜖2 −√−𝑘 − 𝜖1 

√𝛽𝛿 + (𝑘 + 𝜖1)𝜖2
1

2𝛾4𝛿2
√−𝑘 − 𝜖1(𝑘 + 𝛿 + 𝜖1)

4√𝛽𝛿 + (𝑘 + 𝜖1)𝜖2(−2(𝑘 + 𝜖1)𝜖2 − 𝛿(𝛽 + 𝜖2)) 

(6𝛽𝛿5𝜖2 − 8𝛿3(𝑘 + 𝜖1)
2(3𝛽 − 4𝜖2)𝜖2 − 24𝛿2(𝑘 + 𝜖1)

3𝜖2
2 + 12𝛿3(𝑘 + 𝜖1)𝜖2(𝛽𝛿 + (𝑘 + 𝜖1)𝜖2) + 

2𝛿4(𝑘 + 𝜖1)(𝛽
2 + 14𝛽𝜖2 + 4𝜖2

2) + √−𝑘 − 𝜖1√𝜖2√𝛽𝛿 + (𝑘 + 𝜖1)𝜖2(−2(𝑘 + 𝜖1)𝜖2 − 𝛿(𝛽 + 𝜖2)) 

(3𝛽𝛿3𝜖2 − 4𝛿(𝑘 + 𝜖1)
2(3𝛽 − 4𝜖2)𝜖2 − 12(𝑘 + 𝜖1)

3𝜖2
2 + 𝛿2(𝑘 + 𝜖1)(𝛽

2 + 14𝛽𝜖2 + 4𝜖2
2)))))/ 

(8𝛿4(𝑘 + 𝜖1)
3(𝛽𝛿 − √−𝑘 − 𝜖1𝜖2)

2
))}. 

 

 

3 Numerical simulation   

We showed that at the Bautin point 𝐵 = (𝜇 = 0, 𝑞 = 0) there is 𝑙1(𝐵) = 0, what is the first 

condition for getting a double limit cycle. The second condition which should be satisfied is 

𝑙2(𝐵) ≠ 0. It can be shown that at the values 𝛽 = 0.6, 𝛾 = 0.07, 𝛿 = 0.7, 𝜖1 = 0.045, 𝜖2, =

0.078, 𝑘 = −0.16, 𝑞1 = 0.7 there is 𝑙2(𝐵) = −4.2896, what means that the second condition 
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is also satisfied at these values of parameters. The corresponding double cycle is pictured in  

Fig, 4. 

Fig. 4 

 

Source: the authors. 

This picture gives an answer to the open problem of how the solutions of system (3) 

behave in the space between its equilibrium and the outer cycle. At the same time, we see that 

in this space there are two corridors of stability. The first one is situated in the space between 

the equilibrium of system (3) and the inner unstable cycle, the second one is situated between 

the inner cycle and the outer stable cycle. 

 

 

4 Conclusion 

In this paper there is solved the open problem set up by Semmler and Sieveking (Semmler and 

Sieveking (1993)) on the unknown behaviour of model (1)´s solutions in the space between its 

equilibrium and half-cycle stable from outside (see Fig. 2 ). In the present paper this open 

problem is cleared up and illustrated in Fig. 4. The Bautin bifurcation theory enables to expand 

the gained results also to other qualitative behaviours of model (3)´s solutions as is indicated 

on bifurcation diagram of the Bautin normal form. 
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