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Abstract 

This paper introduces a novel approach to hypothesis testing within the framework of classical 

regression analysis, aimed at enhancing the interpretability of regression coefficients. 

Traditionally, t-tests assess the significance of regression parameters against a single null 

hypothesis, typically β = 0. While effective, this method often provides a limited view of the 

underlying data structure. To address this, we propose Multi-Hypothesis tests method, which 

conducts a series of t-tests across a continuous range of potential parameter values, thereby 

generating a spectrum of p-values. These p-values are then plotted against the tested parameter 

values, offering a somewhat probabilistic interpretation akin to the Bayesian approach, but 

within a frequentist framework. We demonstrate this method using the mtcars dataset, 

revealing how it can uncover more nuanced insights into the behavior of regression coefficients. 

This approach bridges the gap between hypothesis testing and confidence intervals, potentially 

paving the way for more comprehensive statistical analysis. While further research is needed, 

our findings suggest that this method could significantly enhance the application of frequentist 

statistics in complex models. 
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Introduction 

In recent years, Bayesian statistics have gained significant attention, offering powerful tools for 

data analysis and hypothesis testing. However, the classical frequentist approach remains 

foundational in statistical practice, particularly in regression analysis. This paper introduces 

a novel approach to hypothesis testing that aims to bridge the gap between confidence intervals 

and p-values, providing a more nuanced interpretation of parameter estimates. Specifically, we 

demonstrate this approach through individual t-tests of significance in regression analysis. 
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The paper begins with a review of the existing literature on significance testing in regression 

models, highlighting the strengths and limitations of the classical t-test. We then introduce our 

new method, which involves conducting multiple t-tests across a range of possible values for 

regression coefficients, thereby offering a probabilistic interpretation of these estimates. 

Finally, we apply this method to a sample dataset, illustrating its practical utility and potential 

to enhance the interpretability of regression results. 

 

1 Literature Review for testing hypothesis in regression 

In this section, we focus on the typical approaches for testing hypothesis in regression. We 

show what needs to be fulfilled to even start hypothesis testing. Furthermore, we overview 

methods that are used when certain assumptions of the classical regression model are violated. 

 

1.1 The Classical t-Test in Regression Analysis 

The t-test is one of the most fundamental tools in statistical analysis, particularly within the 

framework of regression analysis. Introduced by William Sealy Gosset under the pseudonym 

"Student" in 1908, the t-test allows researchers to determine whether a population coefficient 

(θ) is equal to a certain value (Student, 1908). The Gauss-Markov theorem provides the 

theoretical foundation for the Ordinary Least Squares (OLS) estimator, applied to the 

population coefficients’ estimation, too, and asserting that, under certain assumptions, the OLS 

estimator is the Best Linear Unbiased Estimator (BLUE) (Greene, 2018). 

In the classical linear regression model, the significance of an estimated coefficient is typically 

tested against the null hypothesis H0: β = 0 using a t-test. This approach assumes that the errors 

are normally distributed and that the model satisfies the Gauss-Markov assumptions. If the 

calculated t-statistic exceeds a critical value from the t-distribution, the null hypothesis is 

rejected, indicating that the corresponding independent variable has a statistically significant 

effect on the dependent variable (Wooldridge, 2020). 

1.2 Extensions and Modifications of the t-Test 

Over time, the t-test has seen numerous extensions and modifications to account for various 

practical challenges in regression analysis. For instance, in the presence of 

heteroskedasticity – where the assumption of constant variance in the errors is 

violated – standard errors of the coefficients can be adjusted using robust estimates of standard 
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errors, a method introduced by White (1980). This adjustment allows the t-test to remain valid 

even when the Gauss-Markov assumptions are partially relaxed. 

Moreover, the development of alternative hypothesis testing approaches, such as Bayesian 

methods, has offered new perspectives on evaluating regression coefficients. Unlike the 

frequentist t-test, which assesses the probability of observing data given a null hypothesis, 

Bayesian methods compute the probability of a hypothesis given the observed data, 

incorporating prior information into the analysis (Gelman et al., 2013). These approaches have 

provided more flexibility in hypothesis testing, particularly in complex models where 

traditional t-tests may be less effective. 

Another noteworthy extension is the introduction of permutation tests and bootstrap methods, 

which have been used to assess the significance of regression coefficients without relying on 

specific distributional assumptions (Efron & Tibshirani, 1993). These non-parametric 

approaches allow for greater robustness in hypothesis testing, particularly in small samples or 

when model assumptions might be violated. 

1.3 Gaps in the Current Literature 

While the t-test remains a cornerstone of regression analysis, its application is often limited to 

a single hypothesis – typically H0: β = 0. This narrow focus can potentially obscure important 

information about the true nature of the relationship between variables, particularly in the 

presence of uncertainty or model misspecification. Recent studies have suggested that more 

granular approaches, such as performing multiple hypothesis tests across a range of β values 

could provide deeper insights into the behavior of regression coefficients (Leeb & Pötscher, 

2005). 

Furthermore, while robust and alternative hypothesis testing methods address some of the 

limitations of the classical t-test, they do not fully exploit the potential insights available from 

exploring a spectrum of null hypotheses. There is a growing recognition that such multi-

hypothesis approaches could offer a more nuanced understanding of the underlying data-

generating process, particularly in complex or high-dimensional models where traditional tests 

might fail to capture subtleties in the data (Genton, 2001). 
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In summary, while the t-test has been extensively studied and modified, there is a gap in the 

literature regarding the systematic exploration of multiple hypotheses around a central value. 

This paper seeks to address this gap by proposing a method that performs a series of t-tests 

across a range of β values, thereby offering a more comprehensive picture of the significance 

and behavior of regression coefficients. 

2 Methodology 

Let 𝒚 = 𝑿𝛃 +  𝛜, be a theoretical linear regression model represented in a matrix form where: 

• 𝒚 – a vector of values of dependent variable 

• 𝑿 – a model matrix with independent variables and vector of ones as its first column 

• 𝛃 – a vector of population parameters 

• 𝛜 – a vector of errors (nonsystematic variable) 

Then let 𝒚 = 𝑿�̂� + 𝒆 denote a sample linear regression function in a matrix form with vectors 

and matrix being the sample counterparts to the theoretical ones. The “𝒆” denotes the residuals. 

The population parameters 𝛃 are being estimated using the ordinary least squares method (OLS) 

as �̂� = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚. We assume Gauss-Markov assumptions hold (linearity, strict exogeneity, 

no multicollinearity, spherical errors – homoskedasticity and uncorrelated error terms, 

normality) and that this estimate is BLUE under the Gauss-Markov theorem. 

With all these stated we can discuss the significance of 𝛃 parameters using partial t-tests. First, 

we choose a significance level (like α =  0.05) on which we do any hypothesis testing. In 

general, partial t-tests are comprised of hypotheses and the test statistic, 

H0: βⅈ = 0; H1: βⅈ ≠ 0,     (1) 

𝑇𝑖 =
βⅈ̂ − βⅈ

𝑠𝑒(βⅈ̂)
,                       (2) 

where 𝑠𝑒(βⅈ̂) is the standard error of coefficient estimate βⅈ̂, maintaining the previous notation. 

The test statistic 𝑇𝑖 from formula (2) is typically written without the subtraction of βⅈ part 

because we test for the value of 0. But for the next part of this article, we keep it in the 

numerator. After calculating test statistic 𝑇𝑖, we would either find the critical region or calculate 

p-value to determine whether we reject the null hypothesis or not. For the purpose of this article, 

we focus on the latter, i.e., the p-values.  
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P-values for partial t-tests in regression can be calculated like this, 𝑝-value = 2 ∗ (1 − 𝐹(𝑇)), 

where 𝐹(𝑇) is the cumulative distribution function of Student’s t-distribution with (𝑛 − 𝑝) 

degrees of freedom; 𝑛 represents the sample size (number of rows of analyzed data), and 𝑝 

represents the number of estimated parameters. For a model with intercept, 𝑝 is equal to the 

number of independent variables plus one. After calculating p-value, we compare it to the 

significance level we have chosen prior to the calculation. If and only if 𝑝-value ≤ α, we reject 

the null hypothesis H0 in favor to the alternative hypothesis H1. The p-value is the probability 

of obtaining a test result as extreme as the result actually observed, or even more extreme. This 

means that lower p-values indicate that it is unlikely that we would obtain this or a more extreme 

value of statistic under the assumption that the null hypothesis is valid. We use this probability 

and interpretation for our Multi-Hypothesis t-tests. 

2.1 Multi-Hypothesis t-tests 

Conducting a single t-test to evaluate whether the analyzed parameter is significant or not seems 

to be weak. This is one of the reasons to be also conducting interval estimates and building 

confidence intervals (CIs). Through them, we can decide not only if the parameter is significant, 

but we can also look for other values with one calculation. But even this approach isn’t flawless. 

Confidence intervals, unlike credible intervals in the Bayesian approach to hypothesis testing, 

don’t have a probabilistic interpretation. Usually, interpretations of CIs go like this “let the 

estimation process to be repeated over and over with random samples from the same population, 

then 95% of the calculated intervals would be expected to contain the true value” (Hazra, 2017). 

Instead of this, we would like something simple and like the Bayesian approach where we could 

tell: “With probability P the parameter is in this interval”.  

Something like this can be achieved using Multi-Hypothesis testing. We propose that instead 

of performing only one test; we can perform (in theory) multiple (thousands) tests, calculate  

p-values for each of these tests, and evaluate them against the values of tested parameter. This 

approach would aim to find which values are more probable to be the true value. In regression 

for partial t-test we can run the t-tests for each βⅈ̂ with differing null hypothesis like: H0: βⅈ =

𝑎𝑗, where 𝑎𝑗 ∈ [−1; 1]. In practice, we could run for each parameter 2 001 or 20 001 individual 

tests in total with 0.001 or 0.0001 incremental step, respectively, going through the entire 

sequence from -1 to 1. This would also contain the value 0, which we use for evaluation of the 

significance of the tested parameter. In each step, we would calculate p-value and save them. 

Afterward, we plot these p-values against the hypothesized values of the parameter and analyze 
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the behavior around the value 0. This approach aims to assess how distributed these p-values 

are around the 0 value and if they have any tendencies to show which tested values are more 

likely to be seen. By using p-values, we keep the “cumulative” interpretation meaning for each 

tested value and calculated test statistic; we can talk about the probability of obtaining the given 

test result with a specific tested value.  

With this approach, we can cross the bridge between confidence intervals (CI) and hypothesis 

testing. In this quick thought process, we show that if the value of one of the boundaries of CI 

were to be the real value of the population parameter, we would obtain p-value equal to the 

significance level α. 

Thought process. 

• The following hypothesis testing procedure is not valid because we must test the 

parameter against a constant. In this case, we are “testing” parameter 𝛽ⅈ against a 

random variable, which is a nonsense. 

• A confidence interval for β parameters is as follows, 

𝐶𝐼𝑖 = (βⅈ̂ − 𝑡1−α/2(𝑛 − 𝑝) ∗ 𝑠𝑒(βⅈ̂); βⅈ̂ + 𝑡1−α/2(𝑛 − 𝑝) ∗ 𝑠𝑒(βⅈ̂)) 

•  Let’s “test” whether the population parameter of some βⅈ could be equal to one of the 

CIs boundaries with two-sided t-test. 

H0: βⅈ = βⅈ̂ ± 𝑡1−𝛼/2(𝑛 − 𝑝) ∗ 𝑠𝑒(βⅈ̂) 

H1: 𝑛𝑜𝑛𝐻0  

• T statistic: 𝑇𝑖 =
βⅈ̂−(βⅈ̂±𝑡1−α/2(𝑛−𝑝)∗𝑠𝑒(βⅈ̂))

𝑠𝑒(βⅈ̂)
= ±𝑡1−α/2(𝑛 − 𝑝) 

• P-value: 𝑝-value = 2 ∗ 𝑃𝑟(𝑇𝑖 ≥ |𝑡|) = 2 ∗ 𝑃𝑟(𝑇𝑖 ≥ |±𝑡1−α/2(𝑛 − 𝑝)|) = 2 ∗
α

2
=  α 

3 Example on data 

The dataset used to showcase our new approach is mtcars, data about cars extracted from 

1974 Motor Trend magazine (Henderson, 1981). This dataset is available in R by default (R 

Core Team, 2024). 

The dataset contains 11 cars specific variables with 32 observations (objects). 

We will model cars consumption (mpg – miles per US gallon) on their engine power (hp - 

horsepower) and engine displacement (disp). See Tab. 1 for descriptive statistics of those 

variables.  
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Tab. 1: Variables of the mtcars dataset used in a model 

  

3.1  Regression model 

Let’s assume a multiple linear regression model 𝑚𝑝𝑔 = β0 + β1ℎ𝑝 + β2𝑑𝑖𝑠𝑝 +  ϵ. 

We estimate its parameters using OLS. Let’s assume that all Gauss-Markov assumptions1 are 

valid, and the estimates are BLUE. We use a 5% significance level (α =  0.05) for hypothesis 

testing and 95% confidence intervals. 

Tab. 2: Summary of the estimated regression model 

term estimate std.error statistic p.value 

(Intercept) 30.736 1.332 23.083 < 0.001 

hp -0.025 0.013 -1.856 0.074 

disp -0.030 0.007 -4.098 < 0.001 

Source: compiled by the authors 

Tab. 2 shows OLS estimate. P-values are calculated for 𝐻0: βⅈ = 0. From the table we can see 

that p-value for the variable hp is greater than our significance level, therefore we would 

assume that the population parameter is equal to 0. In other words, we are assuming that 

horsepower has no effect on consumption (mpg) in this specific model. In Fig. 1, we 

demonstrate how to use our proposed approach to identify the behavior of this estimate around 

zero. 

 
We are aware that these assumptions should be at least tested, but we use this model just to show on how to use 

Multi-Hypothesis t-tests. There is a slightly higher multicollinearity, and the normality assumption might be 

violated. This would lead to worse estimates and evaluation, but let’s assume that it is not here because we want 

to demonstrate our Multi-Hypothesis approach. 

name vars n mean sd median min max range skew kurtosis 

mpg 1 32 20.09 6.03 19.2 10.4 33.9 23.5 0.61 -0.37 

hp 2 32 146.69 68.56 123.0 52.0 335.0 283.0 0.73 -0.14 

disp  3 32 230.72 123.94 196.3 71.1 472.0 400.9 0.38 -1.21 

Source: compiled by the authors 
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Fig. 1: Plot of p-values for the hp estimate 

In Fig. 1, the red line represents our point estimate of the effect of horsepower on consumption. 

For this estimate, the p-value is logically the largest since the numerator is equal to zero and 

Student’s t-distribution is symmetric around zero. Blue line represents significance level  

α =  0.05. From the plot we can clearly see that we would not reject the null hypothesis  

βℎ𝑝 = 0. But from the interpretation of the p-value for this null hypothesis, we obtain that there 

is a probability of 0.074 to obtain the same or more extreme test result if this given null 

hypothesis would be valid. Clearly from this plot, we can see that βℎ𝑝 values lower than 0 are 

more probable to be seen, meaning the test result for example with a null hypothesis 

𝐻0: βℎ𝑝 = α𝑗 , 𝑗 ∈ (−0.04, 0) has higher p-value signaling that there is higher probability for 

these test results to occur than a test result for a null hypothesis testing zero. In this case, we 

shouldn’t disregard the effect of horsepower of a car on its consumption.  

As we have shown in the thought process, p-values, for the null hypothesis that βⅈ is one of the 

boundaries of a 95% CI, are equal to 0.05 and in the plot, we can see it when the significance 

level line crosses the curve of p-values. The 95% two-sided CI is (-0.0522, 0.0025).  

  

Source: compiled by the authors 
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For the null hypothesis 𝐻0: βℎ𝑝 = −0.0157 we obtain p-value 0.5 meaning there is almost  

50 % chance of obtaining same or more extreme test result. Compare this with different null 

hypothesis like 𝐻0: βℎ𝑝 = −0.02.  

If point estimate and standard error remain the same, then only the numerator in test statistic 

changes. We obtain a smaller p-value indicating that the first tested value (βℎ𝑝 = −0.0157) is 

more consistent with the observed data than the latter one (βℎ𝑝 = −0.02). 

Conclusion 

While we have not achieved a full probabilistic interpretation of confidence intervals, this paper 

presents a new approach to hypothesis testing that offers valuable insights into the likely values 

of regression parameters. By conducting Multi-Hypothesis t-tests and analyzing the resulting 

p-values, researchers can gain a deeper understanding of which parameter values are more 

consistent with the observed data. This approach provides a richer framework for evaluating 

regression coefficients, complementing traditional methods. 

We believe that this method has the potential for further exploration and development, 

potentially leading to a generalization that could enhance the frequentist approach to hypothesis 

testing. Although the debate between hypothesis testing and confidence intervals is ongoing 

within the statistical community, we hope that our work will inspire further research and foster 

a more integrated understanding of these two important concepts. 
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