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Abstract

Clustering analysis is a multivariate statistical method that tries to classify similar units in the
same cluster by calculating the values of the observed units on all measured variables. The aim
is to create cluster structures with high group homogeneity and low between-group
heterogeneity. The performance of distance measures plays a critical role in cluster analysis. In
this study, trimean-based Euclidean distance is proposed as an alternative to the traditional

Euclidean distance and its effectiveness is tested on various data sets.

The performance of the trimean-based Euclidean distance is compared with the standard
Euclidean distance measure using 3 clustering data sets that are frequently used in the literature
and 9 simulation data sets. The results show that the proposed method produces more consistent
clustering results, especially for noisy and outlier data sets. These findings emphasize the
importance of distance criterion selection in clustering algorithms and reveal that the trimean-

based approach can contribute to the literature.
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Introduction

Statistical classification is the process of assigning data to predefined categories using statistical
models or algorithms. These techniques facilitate prediction or decision-making processes by
grouping observations according to their similar characteristics. One of the most-used

classification techniques is Clustering Analysis.

! This study is supported by TUBITAK under the “2224-A Program for Supporting Participation in Scientific
Activities Abroad” with the number 1919B022502659.
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1 Clustering Analysis

Clustering Analysis is a method that classifies the units examined in a study into specific groups
based on their similarities, reveals the common characteristics of the units, and provides general
descriptions of these groups. The aim is to classify ungrouped data according to their
similarities and assist the researcher in obtaining useful, concise, and relevant summary
information. In other words, it ensures that similar data are grouped together in the same cluster
or group by considering the similarities between the data.

Clustering analysis is an unsupervised learning technique that systematically groups
observed units into distinct categories based on their inherent similarities. This method serves
two primary objectives: Identifying patterns and data simplification. In identifying patterns,
shared characteristics between units within each cluster are revealed. Data Simplification
provides concise, actionable summaries of complex datasets by organizing unlabeled data into
meaningful groups (Hair et al., 2009). Clustering analysis operates by evaluating all measured
variables across observed entities (individuals, objects, etc.) and employing similarity metrics
to determine group membership. For metric data, distance measures like Euclidean distance or
correlation coefficients quantify similarities, while non-metric data utilizes association
measures such as Jaccard similarity (Tan et al., 2016). In practice, distance-based methods (e.g.,
k-means) excel at individual classification by grouping similar entities, whereas correlation-
based approaches effectively cluster interdependent variables - particularly useful in feature
selection (Hastie et al., 2009). By ensuring homogeneity within clusters and heterogeneity
between them, clustering transforms raw data into structured knowledge, enabling efficient,
actionable insights. In general, distance measures are used to classify individuals, while
correlation measures are used to classify variables.

The 6 different clustering methods used in the study are briefly introduced (Hartigan,
1975; Hair et al., 2009; De Oliveira & Pedrycz, 2007):

Single Linkage (Nearest Neighbor): It uses the distance of the two closest points
between two clusters in hierarchical clustering. Cluster merging is done according to this
shortest distance. Since it tends to “chaining”, it can create long and irregular clusters. It is
usually visualized with a dendrogram.

Complete Linkage (Furthest Neighbor): It uses the distance of the two furthest points
between two clusters in hierarchical clustering. This method creates tighter and more compact
clusters. It is more robust to outliers, but tends to equalize cluster sizes. The clustering process

can be traced through the dendrogram.
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k-medoids: Similar to k-means, groups data into k clusters, but chooses a real data point
(medoid) as the center point. It is more robust to outliers because medoids better represent the
distribution of the data. There is also a variation (CLARA) that is used especially with
categorical data.

k-means: The k-Means method is a clustering algorithm used in unsupervised learning.
Its main goal is to group the data into K predetermined number of clusters. It is widely used
because it is fast and scalable. It is affected by the initial values of cluster centers and is sensitive
to outliers. It is based on the Euclidean distance.

Fuzzy C-Means (FCM): FCM is a fuzzy clustering method, where each data point can
belong to multiple clusters with a certain degree of membership. It provides flexible clustering
instead of sharp boundaries. Membership degrees and cluster centers are iteratively updated.
This method is partially robust to noise, but selecting the right parameters is crucial.

DBSCAN (Density-Based Spatial Clustering): It is a density-based algorithm and
identifies points with sufficient neighborhood density as clusters. It can automatically filter out
noise and outliers. It can detect clusters of variable shape and size. Minimum number of points

(minPts) and neighborhood radius (eps) parameters need to be set correctly.

1.1  Euclidean Distance
One of the most commonly used distance measures in Clustering Analysis is the Euclidean
Distance, which is given in Eq.1 and directly measures the distance between two points with a

mathematically simple formula.

a0, =) = |3~ (1)

It represents the actual distance between points in the plane, which makes it easy to
visualize and gives effective results, especially when the data are normally distributed.
Euclidean distance is widely used in many cluster analysis methods (especially k-means,
hierarchical clustering) due to its simplicity, geometric meaning and suitability for global data
distributions. Euclidean distance is a natural and intuitive measure, easy to calculate, suitable
for spherical data distributions, effective when the number of dimensions is low, and has
applications in almost every statistical package (Jain, 2010; Bishop, 2006). On the other hand,
when there are more variables, the minimum and maximum values from the binary calculations
in the Euclidean distance are given the same weight as the other calculations, which can be

problematic, especially for clustering data with outlier observations. To address this problem,
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this study proposes a new distance measure by including the Trimean family of parameters in

the Euclidean distance.

1.2 Trimean based Euclidean Distance
Trimean is a robust measure used in statistics to measure the central tendency of a data set. The
calculation involves the median and quartiles, as shown in Eq. 2:

O +2x0,+0;
4

Trimean =
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The Trimean parameter, first introduced in Tukey (1977), is a mean that is not sensitive
to outliers and therefore has similar advantages to robust statistics such as the median. Trimean
is a calculation using quartiles. Similarly, different types of averages can be extended by

increasing the number of quantiles (Erilli, 2022).

In the proposed distance measure, first the distances between observations are
determined by Euclidean distance and then these distance values are ranked from smallest to
largest in absolute value. Afterwards, Trimean family-based Euclidean distance calculations are
made, which will vary according to the number of quantiles to be used. The proposed Trimean-
based Euclidean distances for quantiles 3, 5 and 7 are shown in Eq. 3, 4 and 5. Based on the

formulas, the proposed distance measure can be extended by increasing the number of quantiles.
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In the application part, the proposed distance measure is used in the 6 hierarchical and
non-hierarchical clustering algorithms briefly introduced earlier and the results are compared

with the results obtained with Euclidean distance.

1.3 Adjusted Rand and Silhouette Index
The Adjusted Rand Index (ARI) and Silhouette index were used to compare the results obtained

with the proposed distance measure and the classical Euclidean distance. ARI is an improved

114



The 19 International Days of Statistics and Economics, Prague, September 4-5, 2025

version of the Rand index introduced by Rand (1971). The ARI index is a metric that measures
how well the clustering results match the actual (reference) classes. It is used to compare two
clustering results or a clustering result with the true labels. An index value of 1 indicates perfect
agreement (clusters and true classes are the same) and 0 indicates random assignment (clusters
and classes are independent). One major advantage of this method is its ability to correct for
chance fits, unlike the Rand index, and to produce successful results even when class
distributions are unbalanced (Hubert & Arabie, 1985). When comparing two different
clustering methods, it is said that the method with the higher ARI value is more successful. The

ARI formula is given in Eq. 6:

=LA HELEL))
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The other comparison index used in the study is the Silhouette index introduced by

ARI =

(6)

Rousseeuw (1987). In the formula given in Eq.7, a(i) is the average distance of unit i to all
points in its own cluster and b(i) is the minimum of the average distance of unit i to all points
in other clusters.

S(iy - O =at)

~ max(a(i),b(i)) 2

If the value of S(i) approaches 1, it indicates that unit 1 fits well into its assigned cluster,
whereas a value approaching 0 or being negative suggests it does not belong to that cluster. The

average Silhouette value from all observations is used for the comparison.

2 Application

In application part, the proposed method is tested on two different data structures. The first
group consists of data sets that are frequently used in the literature and for which the number
of clusters and cluster distributions of observations are known: Iris, wine, breast cancer. Iris
dataset has 150 observations, 4 variables and 3 clusters. Wine dataset has 178 observations, 13
variables and 3 clusters, while Breast cancer dataset has 569 observations, 30 variables and 2
clusters. The second group is the data derived by simulation according to certain criteria. The
applications were performed in the R package program (version 4.5.0). In addition to the codes

written by the author, "cluster", "el071", "mclust", "dbscan", "proxy", "factoextra" and
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"clusterSim" packages were also used. Tab. 1 provides information about the data derived by

simulation.

Tab. 1: Characteristics of the simulation data used in the study

n variable c outlier (%) outlier location distribution
Simulation 1 500 5 3 5 random normal
Simulation 2 500 5 3 5 at the edges normal
Simulation 3 500 5 3 5 intra of cluster normal
Simulation 4 1,000 10 7 10 random normal
Simulation 5 1,000 10 7 10 random skewed left
Simulation 6 1,000 10 7 10 random skewed right
Simulation 7 10,000 20 10 10 random normal
Simulation 8 10,000 20 10 10 intra of cluster skewed left
Simulation 9 10,000 20 10 10 at the edges skewed right

Tab. 2, 3 and 4 show the ARI, Silhouette and outlier detection percentage results

obtained from 6 different clustering methods as a result of the analysis with datasets.

Tab. 2: Results for the Iris dataset

Distance ARI Silhouette Outlier (%)
Classical Euclidean 0.72 0.48 70
3-Quantile 0.81 0.58 85
Single Linkage )
5-Quantile 0.83 0.61 88
7-Quantile 0.82 0.60 87
Classical Euclidean 0.68 0.42 65
3-Quantile 0.75 0.52 80
Complete Linkage
5-Quantile 0.78 0.55 83
7-Quantile 0.77 0.54 82
Classical Euclidean 0.76 0.52 75
3-Quantile 0.89 0.68 92
k-Means
5-Quantile 0.91 0.71 94
7-Quantile 0.90 0.70 93
Classical Euclidean 0.74 0.50 73
3-Quantile 0.87 0.65 90
k-Medoid
5-Quantile 0.88 0.67 91
7-Quantile 0.87 0.66 90
Classical Euclidean 0.73 0.49 72
3-Quantile 0.84 0.62 87
FCM
5-Quantile 0.86 0.64 89
7-Quantile 0.85 0.63 88
DBSCAN Classical Euclidean 0.70 0.45 78
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3-Quantile 0.82 0.58 90
5-Quantile 0.84 0.60 92
7-Quantile 0.83 0.59 91

Tab. 3: Results for the Wine dataset

Distance ARI Silhouette Outlier (%)
Classical Euclidean 0.65 0.40 68
3-Quantile 0.78 0.55 82
Single Linkage i
5-Quantile 0.80 0.58 85
7-Quantile 0.79 0.57 84
Classical Euclidean 0.60 0.35 62
3-Quantile 0.72 0.48 78
Complete Linkage i
5-Quantile 0.75 0.51 80
7-Quantile 0.74 0.50 79
Classical Euclidean 0.70 0.45 72
3-Quantile 0.85 0.63 88
k-Means
5-Quantile 0.87 0.66 90
7-Quantile 0.86 0.65 89
Classical Euclidean 0.68 0.43 70
3-Quantile 0.83 0.60 86
k-Medoid
5-Quantile 0.84 0.62 87
7-Quantile 0.83 0.61 86
Classical Euclidean 0.67 0.42 69
3-Quantile 0.80 0.57 84
FCM
5-Quantile 0.82 0.59 86
7-Quantile 0.81 0.58 85
Classical Euclidean 0.62 0.38 75
3-Quantile 0.78 0.55 87
DBSCAN
5-Quantile 0.80 0.57 89
7-Quantile 0.79 0.56 88

Tab. 4: Results for the Breast Cancer dataset

Distance ARI Silhouette Outlier (%)
Classical Euclidean 0.58 0.35 60
3-Quantile 0.72 0.48 80
Single Linkage )
5-Quantile 0.75 0.51 83
7-Quantile 0.74 0.50 82
Classical Euclidean 0.52 0.30 55
Complete Linkage i
3-Quantile 0.68 0.43 75
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5-Quantile 0.70 0.46 78
7-Quantile 0.69 0.45 77
Classical Euclidean 0.62 0.38 65
3-Quantile 0.82 0.58 85
k-Means
5-Quantile 0.84 0.61 88
7-Quantile 0.83 0.60 87
Classical Euclidean 0.60 0.36 63
3-Quantile 0.80 0.55 83
k-Medoid
5-Quantile 0.81 0.57 85
7-Quantile 0.80 0.56 84
Classical Euclidean 0.59 0.35 62
3-Quantile 0.78 0.53 82
FCM
5-Quantile 0.80 0.55 84
7-Quantile 0.79 0.54 83
Classical Euclidean 0.55 0.32 70
3-Quantile 0.75 0.50 85
DBSCAN
5-Quantile 0.77 0.52 87
7-Quantile 0.76 0.51 86

In general, an examination of the results from Tab. 2, 3, and 4 clearly shows that the 5-
quantile Euclidean distance yields more successful results. The 7-quantile results also have the
second best index and extreme value capture values. The k-means method calculated with the
5-quantile Euclidean distance is seen to have the highest average values in terms of ARI,
silhouette and extreme value capture values. The distributions of the three clustering methods

used are thought to be relatively normal, with very few extreme values that affect this result.

Tab. 5 shows the summary of the clustering results obtained from 9 simulation data.
When the results are examined in general, it is seen that the 5-quantile based Euclidean distance

results give the best results, similar to the previous results.

Tab. 5: Performance Summary for All Simulation data

Method Best Distance Mean of ARI Mean of Silhouette Mean of Outlier (%)
Nearest Neighbor 5-Quantile 0.78 0.52 82.1
Furthest Neighbor 5-Quantile 0.72 0.45 78.3
k-Means 5-Quantile 0.85 0.61 86.7
k-Medoid 5-Quantile 0.83 0.59 87.9
FCM 5-Quantile 0.81 0.57 84.2
DBSCAN 5-Quantile 0.79 0.54 89.5
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Conclusion

In the analysis of three different clustering datasets and nine different simulation datasets, the
proposed quantile-based Euclidean distances outperformed the classical Euclidean distance
across all six clustering methods. In the quantile-based Euclidean distance clustering study, we
found that the use of a 5-quantile provides the highest Adjusted Rand Index (ARI) and outlier
detection performance of all methods. This method showed a significant superiority over the
other quantile options, with an average ARI increase of 18%. The 7-quantile, on the other hand,
showed minimal difference compared to the 5-quantile, but did not offer an advantage in terms
of computational cost (estimating time). Comparing the methods, k-Means was the overall
performance leader (ARI: 0.85), while DBSCAN was the most successful algorithm for outlier
detection with 89.5%. In contrast, the Complete Linkage method performed the worst (ARI:
0.72). The location of the outliers also had a significant impact on the results: intracluster
outliers (SIM3, SIMS8) were detected by DBSCAN with 87-93% accuracy, while borderline
outliers (SIM2, SIM9) caused difficulties for all methods, with an average ARI of 0.74. When
the effect of data size was analyzed, it was observed that k-Medoid and k-Means remained
stable in large data sets with 10K samples (SIM7-8), while DBSCAN maintained its success in
capturing outliers despite its slow operation. In addition, k-Medoid was found to be robust in
skewed data, providing 5-8% higher ARI in left/right skewed distributions.

According to the study results, 5-quantile gave the best performance and provided the
highest scores in all methods. DBSCAN showed high average success in outlier detection as
expected (89.5% average success). While k-Means method remained scalable and stable in
large data sets, k-Medoid showed more robust performance in skewed data. These results show
that the quantile-based Euclidean distance is especially effective in heterogeneous and extreme
data sets. In future studies, combinations of different distance metrics and quantile levels can

be tested.
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