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Abstract 

Clustering analysis is a multivariate statistical method that tries to classify similar units in the 

same cluster by calculating the values of the observed units on all measured variables. The aim 

is to create cluster structures with high group homogeneity and low between-group 

heterogeneity. The performance of distance measures plays a critical role in cluster analysis. In 

this study, trimean-based Euclidean distance is proposed as an alternative to the traditional 

Euclidean distance and its effectiveness is tested on various data sets.  

The performance of the trimean-based Euclidean distance is compared with the standard 

Euclidean distance measure using 3 clustering data sets that are frequently used in the literature 

and 9 simulation data sets. The results show that the proposed method produces more consistent 

clustering results, especially for noisy and outlier data sets. These findings emphasize the 

importance of distance criterion selection in clustering algorithms and reveal that the trimean-

based approach can contribute to the literature.  
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Introduction 

Statistical classification is the process of assigning data to predefined categories using statistical 

models or algorithms. These techniques facilitate prediction or decision-making processes by 

grouping observations according to their similar characteristics. One of the most-used 

classification techniques is Clustering Analysis. 

 

 

 

 
1 This study is supported by TUBITAK under the “2224-A Program for Supporting Participation in Scientific 

Activities Abroad” with the number 1919B022502659. 
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1 Clustering Analysis 

Clustering Analysis is a method that classifies the units examined in a study into specific groups 

based on their similarities, reveals the common characteristics of the units, and provides general 

descriptions of these groups. The aim is to classify ungrouped data according to their 

similarities and assist the researcher in obtaining useful, concise, and relevant summary 

information. In other words, it ensures that similar data are grouped together in the same cluster 

or group by considering the similarities between the data. 

Clustering analysis is an unsupervised learning technique that systematically groups 

observed units into distinct categories based on their inherent similarities. This method serves 

two primary objectives: Identifying patterns and data simplification. In identifying patterns, 

shared characteristics between units within each cluster are revealed. Data Simplification 

provides concise, actionable summaries of complex datasets by organizing unlabeled data into 

meaningful groups (Hair et al., 2009). Clustering analysis operates by evaluating all measured 

variables across observed entities (individuals, objects, etc.) and employing similarity metrics 

to determine group membership. For metric data, distance measures like Euclidean distance or 

correlation coefficients quantify similarities, while non-metric data utilizes association 

measures such as Jaccard similarity (Tan et al., 2016). In practice, distance-based methods (e.g., 

k-means) excel at individual classification by grouping similar entities, whereas correlation-

based approaches effectively cluster interdependent variables - particularly useful in feature 

selection (Hastie et al., 2009).  By ensuring homogeneity within clusters and heterogeneity 

between them, clustering transforms raw data into structured knowledge, enabling efficient, 

actionable insights. In general, distance measures are used to classify individuals, while 

correlation measures are used to classify variables.  

The 6 different clustering methods used in the study are briefly introduced (Hartigan, 

1975; Hair et al., 2009; De Oliveira & Pedrycz, 2007): 

Single Linkage (Nearest Neighbor): It uses the distance of the two closest points 

between two clusters in hierarchical clustering. Cluster merging is done according to this 

shortest distance. Since it tends to “chaining”, it can create long and irregular clusters. It is 

usually visualized with a dendrogram. 

Complete Linkage (Furthest Neighbor): It uses the distance of the two furthest points 

between two clusters in hierarchical clustering. This method creates tighter and more compact 

clusters. It is more robust to outliers, but tends to equalize cluster sizes. The clustering process 

can be traced through the dendrogram. 
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k-medoids: Similar to k-means, groups data into k clusters, but chooses a real data point 

(medoid) as the center point. It is more robust to outliers because medoids better represent the 

distribution of the data. There is also a variation (CLARA) that is used especially with 

categorical data. 

k-means: The k-Means method is a clustering algorithm used in unsupervised learning. 

Its main goal is to group the data into K predetermined number of clusters. It is widely used 

because it is fast and scalable. It is affected by the initial values of cluster centers and is sensitive 

to outliers. It is based on the Euclidean distance. 

Fuzzy C-Means (FCM): FCM is a fuzzy clustering method, where each data point can 

belong to multiple clusters with a certain degree of membership. It provides flexible clustering 

instead of sharp boundaries. Membership degrees and cluster centers are iteratively updated. 

This method is partially robust to noise, but selecting the right parameters is crucial. 

DBSCAN (Density-Based Spatial Clustering): It is a density-based algorithm and 

identifies points with sufficient neighborhood density as clusters. It can automatically filter out 

noise and outliers. It can detect clusters of variable shape and size. Minimum number of points 

(minPts) and neighborhood radius (eps) parameters need to be set correctly. 

 

1.1 Euclidean Distance 

One of the most commonly used distance measures in Clustering Analysis is the Euclidean 

Distance, which is given in Eq.1 and directly measures the distance between two points with a 

mathematically simple formula. 

2
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It represents the actual distance between points in the plane, which makes it easy to 

visualize and gives effective results, especially when the data are normally distributed. 

Euclidean distance is widely used in many cluster analysis methods (especially k-means, 

hierarchical clustering) due to its simplicity, geometric meaning and suitability for global data 

distributions. Euclidean distance is a natural and intuitive measure, easy to calculate, suitable 

for spherical data distributions, effective when the number of dimensions is low, and has 

applications in almost every statistical package (Jain, 2010; Bishop, 2006). On the other hand, 

when there are more variables, the minimum and maximum values from the binary calculations 

in the Euclidean distance are given the same weight as the other calculations, which can be 

problematic, especially for clustering data with outlier observations. To address this problem, 
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this study proposes a new distance measure by including the Trimean family of parameters in 

the Euclidean distance.  

 

1.2 Trimean based Euclidean Distance 

Trimean is a robust measure used in statistics to measure the central tendency of a data set. The 

calculation involves the median and quartiles, as shown in Eq. 2: 

1 2 32

4

Q Q Q
Trimean

+  +
=     (2) 

The Trimean parameter, first introduced in Tukey (1977), is a mean that is not sensitive 

to outliers and therefore has similar advantages to robust statistics such as the median. Trimean 

is a calculation using quartiles. Similarly, different types of averages can be extended by 

increasing the number of quantiles (Erilli, 2022). 

In the proposed distance measure, first the distances between observations are 

determined by Euclidean distance and then these distance values are ranked from smallest to 

largest in absolute value. Afterwards, Trimean family-based Euclidean distance calculations are 

made, which will vary according to the number of quantiles to be used. The proposed Trimean-

based Euclidean distances for quantiles 3, 5 and 7 are shown in Eq. 3, 4 and 5. Based on the 

formulas, the proposed distance measure can be extended by increasing the number of quantiles. 
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In the application part, the proposed distance measure is used in the 6 hierarchical and 

non-hierarchical clustering algorithms briefly introduced earlier and the results are compared 

with the results obtained with Euclidean distance. 

 

1.3 Adjusted Rand and Silhouette Index 

The Adjusted Rand Index (ARI) and Silhouette index were used to compare the results obtained 

with the proposed distance measure and the classical Euclidean distance. ARI is an improved 
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version of the Rand index introduced by Rand (1971). The ARI index is a metric that measures 

how well the clustering results match the actual (reference) classes. It is used to compare two 

clustering results or a clustering result with the true labels. An index value of 1 indicates perfect 

agreement (clusters and true classes are the same) and 0 indicates random assignment (clusters 

and classes are independent). One major advantage of this method is its ability to correct for 

chance fits, unlike the Rand index, and to produce successful results even when class 

distributions are unbalanced (Hubert & Arabie, 1985). When comparing two different 

clustering methods, it is said that the method with the higher ARI value is more successful. The 

ARI formula is given in Eq. 6: 
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The other comparison index used in the study is the Silhouette index introduced by 

Rousseeuw (1987). In the formula given in Eq.7, a(i) is the average distance of unit i to all 

points in its own cluster and b(i) is the minimum of the average distance of unit i to all points 

in other clusters. 

( ) ( )
( )

max( ( ), ( ))

b i a i
S i

a i b i

−
=   (7) 

If the value of S(i) approaches 1, it indicates that unit i fits well into its assigned cluster, 

whereas a value approaching 0 or being negative suggests it does not belong to that cluster. The 

average Silhouette value from all observations is used for the comparison.  

 

2 Application 

In application part, the proposed method is tested on two different data structures. The first 

group consists of data sets that are frequently used in the literature and for which the number 

of clusters and cluster distributions of observations are known: Iris, wine, breast cancer. Iris 

dataset has 150 observations, 4 variables and 3 clusters. Wine dataset has 178 observations, 13 

variables and 3 clusters, while Breast cancer dataset has 569 observations, 30 variables and 2 

clusters. The second group is the data derived by simulation according to certain criteria. The 

applications were performed in the R package program (version 4.5.0). In addition to the codes 

written by the author, "cluster", "e1071", "mclust", "dbscan", "proxy", "factoextra" and 
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"clusterSim" packages were also used. Tab. 1 provides information about the data derived by 

simulation. 

 

Tab. 1: Characteristics of the simulation data used in the study 

 n variable c outlier (%) outlier location distribution 

Simulation 1 500 5 3 5 random normal 

Simulation 2 500 5 3 5 at the edges normal 

Simulation 3 500 5 3 5 intra of cluster normal 

Simulation 4 1,000 10 7 10 random normal 

Simulation 5 1,000 10 7 10 random skewed left 

Simulation 6 1,000 10 7 10 random skewed right 

Simulation 7 10,000 20 10 10 random normal 

Simulation 8 10,000 20 10 10 intra of cluster skewed left 

Simulation 9 10,000 20 10 10 at the edges skewed right 

Tab. 2, 3 and 4 show the ARI, Silhouette and outlier detection percentage results 

obtained from 6 different clustering methods as a result of the analysis with datasets. 

 

Tab. 2: Results for the Iris dataset 

  Distance ARI Silhouette Outlier (%) 

Single Linkage 

Classical Euclidean 0.72 0.48 70 

3-Quantile 0.81 0.58 85 

5-Quantile 0.83 0.61 88 

7-Quantile 0.82 0.60 87 

Complete Linkage 

Classical Euclidean 0.68 0.42 65 

3-Quantile 0.75 0.52 80 

5-Quantile 0.78 0.55 83 

7-Quantile 0.77 0.54 82 

k-Means 

Classical Euclidean 0.76 0.52 75 

3-Quantile  0.89 0.68 92 

5-Quantile  0.91 0.71 94 

7-Quantile 0.90 0.70 93 

k-Medoid 

Classical Euclidean 0.74 0.50 73 

3-Quantile  0.87 0.65 90 

5-Quantile  0.88 0.67 91 

7-Quantile  0.87 0.66 90 

FCM 

Classical Euclidean 0.73 0.49 72 

3-Quantile  0.84 0.62 87 

5-Quantile  0.86 0.64 89 

7-Quantile  0.85 0.63 88 

DBSCAN Classical Euclidean 0.70 0.45 78 
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3-Quantile  0.82 0.58 90 

5-Quantile  0.84 0.60 92 

7-Quantile  0.83 0.59 91 

 

Tab. 3: Results for the Wine dataset  

  Distance ARI Silhouette Outlier (%) 

Single Linkage 

Classical Euclidean 0.65 0.40 68 

3-Quantile  0.78 0.55 82 

5-Quantile  0.80 0.58 85 

7-Quantile  0.79 0.57 84 

Complete Linkage 

Classical Euclidean 0.60 0.35 62 

3-Quantile  0.72 0.48 78 

5-Quantile  0.75 0.51 80 

7-Quantile  0.74 0.50 79 

k-Means 

Classical Euclidean 0.70 0.45 72 

3-Quantile  0.85 0.63 88 

5-Quantile  0.87 0.66 90 

7-Quantile  0.86 0.65 89 

k-Medoid 

Classical Euclidean 0.68 0.43 70 

3-Quantile  0.83 0.60 86 

5-Quantile  0.84 0.62 87 

7-Quantile  0.83 0.61 86 

FCM 

Classical Euclidean 0.67 0.42 69 

3-Quantile  0.80 0.57 84 

5-Quantile  0.82 0.59 86 

7-Quantile  0.81 0.58 85 

DBSCAN 

Classical Euclidean 0.62 0.38 75 

3-Quantile  0.78 0.55 87 

5-Quantile  0.80 0.57 89 

7-Quantile  0.79 0.56 88 

 

Tab. 4: Results for the Breast Cancer dataset  

  Distance ARI Silhouette Outlier (%) 

Single Linkage 

Classical Euclidean 0.58 0.35 60 

3-Quantile  0.72 0.48 80 

5-Quantile  0.75 0.51 83 

7-Quantile  0.74 0.50 82 

Complete Linkage 
Classical Euclidean 0.52 0.30 55 

3-Quantile  0.68 0.43 75 
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5-Quantile  0.70 0.46 78 

7-Quantile  0.69 0.45 77 

k-Means 

Classical Euclidean 0.62 0.38 65 

3-Quantile  0.82 0.58 85 

5-Quantile  0.84 0.61 88 

7-Quantile  0.83 0.60 87 

k-Medoid 

Classical Euclidean 0.60 0.36 63 

3-Quantile  0.80 0.55 83 

5-Quantile  0.81 0.57 85 

7-Quantile  0.80 0.56 84 

FCM 

Classical Euclidean 0.59 0.35 62 

3-Quantile  0.78 0.53 82 

5-Quantile  0.80 0.55 84 

7-Quantile  0.79 0.54 83 

DBSCAN 

Classical Euclidean 0.55 0.32 70 

3-Quantile  0.75 0.50 85 

5-Quantile  0.77 0.52 87 

7-Quantile  0.76 0.51 86 

 

In general, an examination of the results from Tab. 2, 3, and 4 clearly shows that the 5-

quantile Euclidean distance yields more successful results. The 7-quantile results also have the 

second best index and extreme value capture values. The k-means method calculated with the 

5-quantile Euclidean distance is seen to have the highest average values in terms of ARI, 

silhouette and extreme value capture values. The distributions of the three clustering methods 

used are thought to be relatively normal, with very few extreme values that affect this result. 

Tab. 5 shows the summary of the clustering results obtained from 9 simulation data. 

When the results are examined in general, it is seen that the 5-quantile based Euclidean distance 

results give the best results, similar to the previous results. 

 

Tab. 5: Performance Summary for All Simulation data 

Method Best Distance Mean of ARI Mean of Silhouette Mean of Outlier (%) 

Nearest Neighbor 5-Quantile 0.78 0.52 82.1 

Furthest Neighbor 5-Quantile  0.72 0.45 78.3 

k-Means 5-Quantile  0.85 0.61 86.7 

k-Medoid 5-Quantile  0.83 0.59 87.9 

FCM 5-Quantile  0.81 0.57 84.2 

DBSCAN 5-Quantile  0.79 0.54 89.5 
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Conclusion  

In the analysis of three different clustering datasets and nine different simulation datasets, the 

proposed quantile-based Euclidean distances outperformed the classical Euclidean distance 

across all six clustering methods. In the quantile-based Euclidean distance clustering study, we 

found that the use of a 5-quantile provides the highest Adjusted Rand Index (ARI) and outlier 

detection performance of all methods. This method showed a significant superiority over the 

other quantile options, with an average ARI increase of 18%. The 7-quantile, on the other hand, 

showed minimal difference compared to the 5-quantile, but did not offer an advantage in terms 

of computational cost (estimating time). Comparing the methods, k-Means was the overall 

performance leader (ARI: 0.85), while DBSCAN was the most successful algorithm for outlier 

detection with 89.5%. In contrast, the Complete Linkage method performed the worst (ARI: 

0.72). The location of the outliers also had a significant impact on the results: intracluster 

outliers (SIM3, SIM8) were detected by DBSCAN with 87-93% accuracy, while borderline 

outliers (SIM2, SIM9) caused difficulties for all methods, with an average ARI of 0.74. When 

the effect of data size was analyzed, it was observed that k-Medoid and k-Means remained 

stable in large data sets with 10K samples (SIM7-8), while DBSCAN maintained its success in 

capturing outliers despite its slow operation. In addition, k-Medoid was found to be robust in 

skewed data, providing 5-8% higher ARI in left/right skewed distributions. 

According to the study results, 5-quantile gave the best performance and provided the 

highest scores in all methods. DBSCAN showed high average success in outlier detection as 

expected (89.5% average success). While k-Means method remained scalable and stable in 

large data sets, k-Medoid showed more robust performance in skewed data. These results show 

that the quantile-based Euclidean distance is especially effective in heterogeneous and extreme 

data sets. In future studies, combinations of different distance metrics and quantile levels can 

be tested. 
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