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Abstract

Dealing with macroeconomic processes, we are quite often interested in their qualitative behavior
in time. For practice, especially a case of their behavior in a neighborhood of the corresponding
equilibrium is important. It is shown that a utilization of the bifurcation theory of differential
equations enables to study such issues. In the paper there is presented a case of possible
development of nominal rate of interest and expected rate of inflation in an economy which is
described by a two-dimensional nonlinear differential system with respect to continuous time. The
conditions guaranteeing the birth of double cycles around the system’s equilibrium are found using
Bautin local bifurcation theory. In the case of two cycles the inner cycle is unstable, the outer one
is stable. The cycles determine two corridors of stability. The first corridor of stability lies between
the stable equilibrium of the system and the inner cycle, the second one lies between the inner

cycle and the outer cycle. The results are illustrated by numerical simulation.
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Introduction

In recent times, the credibility of Minsky's financial instability hypothesis (Minsky, 1982, 1986)
which means that a financially dominated capitalist economy is inherently unstable, is growing
rapidly. It seems that recent turbulence in the world economy has proved it. For example, the
Japanese economy experienced serious deflationary depression in the 1990s and the 2000s, and
serious financial crisis, which began in the USA with the 2008 mortgage crisis, rapidly spread to
other parts of the world such as Europe and Asia. But Minsky did not think that such inherent
instability was uncontrollable by the government and the central bank. He emphasized that it is

important to ‘stabilize an unstable economy’ by means of proper macroeconomic stabilization
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policies implemented by the government and the central bank. In this respect, Minsky inherits
Keynes’ spirit (Keynes, 1936).

As a reaction especially to the deflationary depression in the Japanese economy, Asada
(2011) set up a simple Keynesian macrodynamic model of monetary policy describing the
development of nominal rate of interest and expected rate of inflation. In Asada (2011), however,
analytical treatment is rather sketchy, and the numerical simulation is not presented. In the paper
Asada et al (2016) the dynamic model from Asada (2011) is studied rigorously both analytically
and numerically.

In the present paper, Asada’s (2011) two-dimensional nonlinear dynamic model is studied
again from the point of view of the existence of a stability corridor. Economists, utilizing modern
mathematical technics, have possibilities not only to study nonlinear dynamic models enabling the
birth of cycles, but also at the same time possible arises of stability corridors. For this purpose, we
enriched Asada’s dynamic model by a control function enabling the birth of double cycles around
the model’s equilibrium. It is shown that the cycles determine two corridors of stability. The first
corridor of stability lies between the equilibrium of the model and the inner cycle, the second one
lies between the inner cycle and the outer cycle. Issues dealing with the existence of stability
corridors are studied also for example in Leijonhufvud (1973), Semmler and Sieveking (1993),
Diamond (2005) and Cardim de Carvalho (2016).

This paper is arranged as follows. A motivation to study the topic of the existence of
stability corridors is explained in Introduction. In Section 1 a model investigated in this paper is
introduced and performed its complete analysis. Section 2 presents a numerical simulation of a
result achieved in this paper. Section 3 is devoted to final notes concerning reached results and

indicates their possible deepening and expansion.

1 Model

The original Asada’s model which was set up by Asada in Asada (2011) has the form
r=a@—m)+p(Y-Y) (1)
i® =y[0(@—1°) + (1 — 6)(m — )] (2)
Y=Yr—-n%G1), n=e(Y-Y)+n%0<1<1,0<60<1, 3)
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Y - real national income, Y- natural output level corresponding to the natural rate of unemployment

(fixed), G- real government expenditure (fixed), - marginal tax rate (fixed), m = S — the rate of

inflation, ¢- expected rate of inflation, 7- target rate of inflation, r- nominal rate of interest, r —
n®-expected real rate of interest, a, 5,7, > 0.
Putting relations (3) into equations (1) and (2) we receive
F=a(e(Y(r—n%G1)—YV)+n¢—7)+pY(r—n°G1)—Y)) 4)
¢ =y(0(@ —n®) + (1 —0)e(Y(r — % G,7) — Y)). (5)
In Asada (2011), however, analytical treatment is rather sketchy, and the numerical simulation is
not presented. In the paper Asada et al (2016) the dynamic model from Asada (2011) is studied
rigorously both analytically and numerically.

To study the existence of stability corridors it is suitable to enrich model (4)-(5) by a control
function
h(r®) = n3(t — 1¢)* +ns (& — m°)°. (6)
The control function (7€) with real parameters nzend 715 is smooth function and therefore can be
used as a control function for model (4) - (5). Adding it to model (4)-(5) we get the model
F=ale(Y(r—m%G1)—YV)+n¢—7)+BY(r—n°G,1)—T))

= fi(r,n% a,B,¢,G,T) (7)
e =y@@—n®)+ (1 —-0)e(Y(r —m®,G,1) = Y) + ns(@ — )3 + ns (7 — m°)°)
= fo,(r,m%v,0,¢,G,1). (3)

The normal equilibrium point E = (r*,m®") of this system is determined by the relations 7 =

0,7t° = 0,Y = Y. From the structure of the functions f 1 (r,m%a,p,,G,7)and f 2 (r,m%y,0,¢,G, 1)

we receive
Y(r*=7,G,1) =7, )
T = =T (10)

Equation (9) means that the 'natural” output level is realized at the normal equilibrium point.
Equation (10) means that the expected rate of inflation is realized, and the realized rate of inflation
is equal to the target rate of inflation at the normal equilibrium point.

The nominal rate of interest at the normal equilibrium point r* is determined as follows. First, the
equilibrium real rate of interest p* is determined by the equation Y (p*, G,7) = Y. Solving this

equation with respect to p*, we have
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" " dp* dp*

p*=p*(G1); %> 0,7-<0, (11
Then we have

™ =p*(G,T) +T. (12)

If r* in (12) is negative, the economically meaningful normal equilibrium point does not exist. The
condition r* > 0 is equivalent to the condition

> —p*(G,1). (13)
If G 1s sufficiently small and/or 7 is sufficiently large, the equilibrium real rate of interest p* may
become negative. In this case, inequality (13) may not be satisfied so that the normal equilibrium
point need not exist if the target rate of inflation 7 is not sufficiently large. From now on, we
assume that inequality (13) is satisfied so that the equilibrium nominal rate of interest r* is positive.
We shall study the qualitative properties of model (7) - (8) utilizing the Bautin bifurcation theory.
To apply the Bautin bifurcation theory it is required to perform the following steps (see Kuznetsov
(2004)):

1. to find conditions on the parameters of model (7)-(8) which guarantee that the Jacobian matrix
of model (7)-(8) has a pair of purely imaginary eigenvalues.

It can be shown using the standard procedure (see for example Wiggins (1990) or Kuznetsov
(2004)) that the Jacobian matrix of model (7) - 8) is traceless if and only if the value of parameter
B is

Bo = ely(1— ) —a] + 22 o

, Yrge=

o(r —me)

Yr*_ne*
The value o called the bifurcation value, is positive for 8 from the interval 0 < 8 < 6,,,, where

_ (0( - V)SYT*—Tre*
Y — Ve e _pe- .

m

For the positive bifurcation values S, the Jacobian matrix of model (7)-(8) has the pair of purely

imaginary eigenvalues

tio, 0 =/ —y[y8%2 —e(-1+ 0)(a +yO)Y' (r* — *)].
2. to translate the equilibrium E = (r*, 7¢") into the origin E, = (0,0) and the bifurcation value f,

into zero by shifting x; = r —r*, x, = n® — ", u =B — By. We gain the system

i=(1), (14)

X2
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which is for enrolment rather long and not enough lucid. Hence, to be able to present system (14)
in detailed form, we rewrite system (7)-(8) in the following re-parametrization

Ci=ale+B)Y -Y),C,=0a,C;3=y0,C, =y(1 - 0O)e.

In this set up system (7)-(8) has the form

i =C (Y =7)+ C,(n¢ — 7))

8 = C3(m—m®) + C,(Y = Y) + n3(m — n®)3 + ns (7w — m®)S.

Introducing the production function Y in the form Y = % + er#n:e with suitable positive constants 4, b, k,
system (7)-(8) takes the form

iy = G5 =V 45 (—A+bP)e™ %% | + Cyx, (15)
%y = C, [g —V+3(-4+ bY)e_x1+x2] — C3%,. (16)
3. to transform system (15)-(16) by the substitution

() =M()

where the matrix M consists of the eigenvectors of the Jacobian matrix of system (15)-(16) at x; =

0,x, = 0,u = 0, to the form with the Jordan linear approximation matrix

y=By+G,

G 0= ) o=lE). am 3, it roor
y_(yZ)' B_< 0 6'(’[,[) ! G= GZ ’ Gl_z £y sk!l!gkl(ﬂ)xlxz-l_o(lxl )r
<k+l=<

o) = &) +iww),§(0) = 0,w(0) = wy, 6(w) = §(W-iw(W), G, = Gy,

where

1 _ _
§() = 57 (AC, = bYCy — bC3 — AC, + bV Cy)

1 ’s Vo
() = [4(—AbC,C5 + b2V C,C5 — AbC,C, + b2V C,C,)

—(=AC, + bYC, + bCs + AC, — bTCTZ,
and the symbol (0) means the complex conjugate expression to 0. As the expressions Gy,G, are
complex conjugate forms, we will further deal only with the form G;. In our case it is not necessary to
derive the Bautin normal form
w= (B + Du+ frulul? + sulul* + 0(|ul®),

which gives by its solution at s = —1 the bifurcation diagram shown in Fig. 1.
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Fig. 1: Bifurcation diagram of the Bautin normal form
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Source: Kuznetsov, Yu. A., 2004, p. 314.

On this bifurcation diagram there are pictured all possible qualitative behaviours of system (7)-
(8)’s solutions around its equilibrium with respect to the values of parameters 8, and f,. Taking
into account our aim, we see that only the behaviour of solutions corresponding to the pairs
(,81, ,82) lying in the space denoted by number 3 which is determined by the arc T of a parabola

and the positive part of the parameter f3.,.

2 Numerical simulations

In this chapter we present numerical simulations obtained by the analysis of system (7)-(8). We
take the following values of parameters:

=0.02,Y =120,Ty =2,Cy =5,6 =52,c =0.8,7 =04,

which give the equilibrium of system (7)-(8): E = (r* = 0.05,7¢* = 0.02). Then the constant k is given
by the relation

k={[1-c(1—1)]¥ = (cTy + Co + G)}e ™.

Further, we take the adjustment constants a = %, € = 2,y = 2. Now we are able to obtain a critical
value 3, as a function of the credibility parameter 8. Admissible range of 6 is 0 < 6 < 6,,,6,, = 0.82

The result is shone in Fig. 2.
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Fig. 2: Admissible range of the credibility paramether 6
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Source: the authors.

We are interested in the behaviour of solutions in a neighbourhood of the equilibrium of model
(7)-(8) with respect to the neighbourhood of the point in parametric space:(5,13) = (8o, 0) = B,,.
The first Lyapunov coefficient [; vanishes at B,, and the second Lyapunov coefficient is non-zero
for every non-zero 7n5. Therefore, our system is locally equivalent with the Bautin normal form,
which provide the case of coexistence of stable equilibrium, inner unstable cycle and outer stable
cycle. In our case we fix the parameters as follows: f = 1.05 X 5,73 = 10 X cos @ ,n5 =

40 X sin @, where @ = 0.65 X II. Dynamics is shown on Figures bellow.

Fig. 3: Evolution of variables r and ¢ starting in the interior of the unstable cycle with initial

values 7(0) = 1.1 x r*,w¢(0) = 7",
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Source: the authors.
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Evolution of variables r and ¢ starting in between inner unstable cycle and outer stable cycle

with the initial values r(0) = 2.6 X r*,w¢(0) = m¢*. Dynamics is shown on Figures bellow.

Fig. 4: Evolution of variables r and ¢ starting in between inner unstable cycle and outer

stable cycle with the initial values (0) = 2.6 X r*,m¢(0) = 7.
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Source: the authors.

Fig. 5: Stable outer with unstable inner cycles and the equilibrium as blue point

e

Source: the authors.

Conclusion

In the paper there is presented the case of the behaviour of solutions in a neighbourhood of model
(7) - (8)’s equilibrium enabling the coexistence of two cycles, the inner one unstable and the outer
one stable. As to the future analyses of the model, it could be interesting to analyse also other cases

of qualitative behaviour of solutions which Bautin bifurcation enables.

423



The 19 International Days of Statistics and Economics, Prague, September 4-5, 2025

Acknowledgements

This research was supported by the grant schemes VEGA 1/0382/23, VEGA 1/0084/23 and VEGA
1/0346/25 of the Ministry of Education, Research, Development and Youth of the Slovak
Republic. The authors express gratitude to anonymous referees for their helpful comments on an

earlier version of this paper.

References

Asada, T. (2011). Central Banking and Deflationary Depression: In: Capello, M., Rizzo, C.,
Editors. Central Banking and Globalization. New York, Nova Science Publishers, (2011),
91-114.

Asada, T., Demetrian, M., & Zimka, R. (2016). The Stability of Normal Equilibrium Point and the
Existence of Limit Cycles in a Simple Keynesian Macrodynamic Model of Monetary Policy.
In: Matsumoto, A., Szidarovsky, F., Asada, T. Editors. Essays in economic dynamics.
Singapore: Springer (2016) 45-62.

Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. London:
Macmillan (1936).

Cardim de Carvalho, F. (2016). Some Research Notes on the Concept of Corridor of Stability.
March 2016, https://doi.org/10.13140/RG.2.2.31743.51363.

Diamond, R. (2005). Fisher, Keynes and the Corridor of Stability. The American Journal of
Economics and Sociology, 64 (1), 185-199

Kuznetsov, Y. (2004). Elements of Applied Bifurcation Theory, New York: Springer-Verlag.

Leijonhufvud, A. (1973). Effective Demand Failures. The Swedish Journal of Economics, 75(1),
27-48.

Minsky, H. P. (1982). An “It” happens again? Essays on instability and finance. Armonk, New
York: M. E. Sharpe, 1982.

Minsky, H. P. (1986). Stabilizing an unstable economy. New Haven: Yale University Press, 1986.

Semmler, W., & Sieveking, M. (1993). Nonlinear liquidity-growth dynamics with corridor
stability. Journal of Economic Behaviour and Organization. 22 (1993), 189-208.

Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical system and Chaos. New Y ork:
Springer-Verlag. https://doi.org/10.1007/b97481.

424


http://dx.doi.org/10.13140/RG.2.2.31743.51363
https://doi.org/10.1007/b97481

The 19 International Days of Statistics and Economics, Prague, September 4-5, 2025

Contact

Rudolf Zimka

Matej Bel University in Banské Bystrica, Faculty of Economics
Tajovského 10, 974 01 Banska Bystrica, Slovak Republic
rudolf.zimka@umb.sk

Michal Demetrian
Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics
Mlynska dolina F1, 842 48 Bratislava, Slovak Republic

michal.demetrian@uniba.sk

Emilia Zimkova
Matej Bel University in Banské Bystrica, Faculty of Economics
Tajovského 10, 974 01 Banska Bystrica, Slovak Republic

emilia.zimkova@umb.sk

Katarina Kysel'ova
Gymnasium A. Kmeta
Bansk4 Stiavnica, Slovak Republic

kmakovin@gmail.com

425


mailto:emilia.zimkova@umb.sk
mailto:kmakovin@gmail.com

