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Abstract 

Fuzzy Functions (FFs), originally proposed by Turksen, represent a non-rule-based inference 

method. In this approach, data are clustered using the Fuzzy C-Means (FCM) algorithm; each 

observation is assigned to all clusters with specific membership degrees, and these degrees are 

incorporated into the input matrix as additional variables. Turksen suggested that this expanded 

input matrix could enhance the model’s predictive performance. Moreover, including functions 

of the membership degrees in the model has been shown to further improve predictive accuracy. 

However, such transformations can introduce a large number of correlated variables into the 

input matrix, potentially leading to multicollinearity issues. In this study, it is aimed to use 

Lasso regression with Type-1 Fuzzy Functions to address this issue and improve model 

performance. Lasso performs variable selection by excluding ineffective or less significant 

variables, thereby increasing the model’s generalizability and reducing the risk of overfitting. 

The method has been evaluated on three real-world datasets, and the results show that it 

outperforms the other methods included in the study. 
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1 Introduction  

Forecasting is essential for effective decision-making, as it enables the prediction of future 

events or trends by examining past data. This structured process relies on mathematical 

modeling, statistical analysis, and a variety of techniques to estimate what lies ahead. Across 

fields such as business, economics, and weather forecasting, it provides a reliable basis for 

planning in uncertain conditions. By interpreting patterns in historical data, forecasting supports 

data-driven and strategic predictions. 

Forecasting approaches are generally classified into two primary categories: statistical 

and non-statistical (alternative) techniques. Statistical approaches, which rely on deterministic 

structures and relatively simple models, tend to perform effectively when the underlying data 

satisfies certain predefined assumptions. Nonetheless, their effectiveness significantly 
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diminishes in the presence of real-world data that exhibit complexity, non-linearity, and 

unpredictability. 

Contemporary forecasting research has increasingly focused on alternative 

methodologies, including artificial intelligence (AI) and fuzzy logic, which offer enhanced 

flexibility and accuracy compared to conventional techniques. AI, particularly through 

advanced machine learning models such as artificial neural networks (McCulloch & Pitts, 

1943), is proficient in uncovering complex data structures and modeling nonlinear associations. 

This strength enables forecasters to effectively process and interpret intricate and evolving 

datasets, thereby facilitating a more comprehensive analysis of underlying patterns and 

behaviors. On the other hand, fuzzy logic is especially advantageous in contexts involving 

vagueness and uncertainty, as it accommodates gradations of truth and linguistic variables, 

offering a robust solution where traditional models fall short in managing ambiguity. 

Fuzzy Inference Systems (FIS), originally proposed by Zadeh (1973), serve as robust 

artificial intelligence frameworks for modeling uncertainty and handling imprecise information. 

At the heart of these systems lies a rule base composed of expert-defined fuzzy rules, which 

articulate the relationships between inputs and outputs through "IF-THEN" constructs. These 

rules apply fuzzy logic to input variables to infer corresponding outputs. Consequently, the 

effectiveness of an FIS is heavily dependent on the quality and comprehensiveness of the expert 

knowledge embedded in its rule set. However, this dependence poses a significant limitation, 

particularly in dynamic environments, as traditional FIS lack the capacity to autonomously 

adapt or learn from new data. To address this challenge, Turksen (2008) introduced type-1 fuzzy 

function-based methodologies that facilitate automatic rule generation, thereby enhancing the 

adaptability and learning ability of fuzzy systems. 

Type-1 Fuzzy Functions (T1FFs) rely on a regression approach that utilizes both 

membership degrees and their transformations as predictors. However, this structure may lead 

to multicollinearity, a common issue in high-dimensional datasets, which violates the core 

assumptions of Ordinary Least Squares (OLS) regression. In regression analysis, 

multicollinearity increases the variance of parameter estimates, causing the model to overfit the 

training data and thereby reducing its generalizability. (Bas et al., 2019-2020), (Kizilaslan et 

al., 2020) and (Tak and Inan, 2022) addressed the multicollinearity problem in their studies by 

using Ridge Regression. Although ridge regression can resolve multicollinearity, it does not 

address the issue of overfitting.  Lasso regression (Least Absolute Shrinkage and Selection 

Operator) is an effective method for reducing multicollinearity and selecting important 
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variables. With the L1 penalty term, it shrinks some coefficients to zero, which simplifies the 

model and makes it easier to interpret. This helps prevent overfitting (Tibshirani, 1996). In 

high-dimensional datasets, Lasso also improves model accuracy and generalizability by 

identifying the most relevant variables (Zou & Hastie, 2005; James et al., 2013). The positive 

effects of Lasso on multicollinearity and overfitting have been supported by various studies in 

the literature. For example, Kökçü and Gençtürk (2021) demonstrated the effectiveness of 

Lasso in variable selection and overfitting control in their study on environmental datasets. 

Similarly, a study by Demir and Özkan (2018) reported that Lasso yielded lower error rates 

compared to classical methods and provided more stable results in the presence of 

multicollinearity.  

T1FFs use the Fuzzy C-Means (FCM) algorithm to determine the membership degrees 

included in the input matrix. The clustering process is critically important for identifying 

accurate patterns, and therefore, extensive research has been conducted on clustering algorithms 

in the literature. Specifically, the FCM algorithm, originally proposed by Dunn (1973) and later 

developed by Bezdek (1984), is among the most widely used fuzzy clustering methods. The 

obtained membership degrees and functions are incorporated into the model by adding them to 

the input matrix. In this context, Celikyılmaz and Türksen (2009) stated that applying 

mathematical transformations such as exponential and logarithmic to the membership degrees 

could improve the prediction performance of T1FFs. These transformations make the model 

more flexible and generalizable. 

However, this extended structure may lead to high correlations among explanatory 

variables, causing modeling issues such as multicollinearity and overfitting. In this study, to 

mitigate these problems and balance model complexity through variable selection, the Type-1 

Fuzzy Lasso Regression (T1FLR) method was employed, which integrates the Lasso regression 

technique within the framework of Type-1 Fuzzy Functions. In this way, it is aimed to 

overcome both multicollinearity and overfitting issues. 

2 Method  

The primary objective of clustering methods is to group observations with similar 

characteristics while separating those that differ significantly. In this process, the accurate 

determination of cluster centers plays a critical role. In the Type-1 Fuzzy Functions (T1FFs) 

framework, data are clustered using the Fuzzy C-Means (FCM) algorithm, where each 

observation is assigned to all clusters with specific degrees of membership. These membership 
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degrees and corresponding functions are then incorporated into the input matrix and included 

in the model. However, this extended structure may introduce high correlations among 

explanatory variables, leading to issues such as multicollinearity and overfitting. To mitigate 

these problems, the Lasso regression technique is employed within the T1FF framework in this 

study. By performing variable selection, Lasso retains only the most relevant predictors in the 

model, thereby enhancing both its generalizability and interpretability. The detailed steps and 

overall structure of the method are presented below. 

Fig. 1: Architecture of Fuzzy Functions with Lasso 

 

Algorithm 1: 

Step 1: The fuzziness parameter 𝑚 and the number of clusters 𝑐 are selected. 

Step 2: The input matrix 𝑋 ∈ 𝑅𝑛𝑥𝑝 is clustered using FCM, and the membership degrees and 

cluster centers are obtained. 

Step 2.1: Calculate the membership value using the formula in Equation (1): 

 𝜇𝑖𝑘 = [∑ (
𝑑(𝑥𝑘,𝑣𝑖

𝑑(𝑥𝑘,𝑣𝑗
)

2

𝑚𝑖−1𝑐
𝑗=1 ]

−1

  𝑖 =1,2,…, 𝑐; 𝑘=1,2,… , 𝑛                                                          (1) 

Here, 𝑥 denotes the input matrix, 𝑣 represents the cluster centers, 𝑑(·) is the Euclidean distance 

function, 𝑐 is the number of clusters, and 𝑚 is the fuzziness parameter, as shown in Equations 

(1) and (2). 
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Step 2.2 Update the cluster centers using the formula in Equation (2):  

𝑣𝑖 =
∑ (𝜇𝑖𝑘)𝑚𝑖𝑥𝑘

𝑛
𝑘=1

∑ (𝜇𝑖𝑘)𝑚𝑖𝑛
𝑘=1

                                                      (2)   

Step 2.3 Repeat Steps 2.1 and 2.2 until the difference between cluster centers in two 

consecutive iterations falls below a predefined threshold, or until the maximum number 

of iterations is reached. 

Step 3: Adding the membership degrees and their functions to the input matrix, the 𝑋 and 𝑌 

matrices corresponding to the i-th cluster are obtained as follows.: 
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 , 𝑖 =  1, 2, … , 𝑐 

Step 4: For each cluster, a regression model is fitted using Lasso to perform parameter 

estimation and feature selection simultaneously. 

arg 𝑚𝑖𝑛𝐵 {∑ (𝑦(𝑖) − (𝑋𝑖)𝑇 𝐵(𝑖))
2𝑐

𝑖=1 +   𝜆 ‖𝐵𝑖‖
1
} for 𝑖 = 1, 2, ..., 𝑐                                       (3) 

Step5: The predictions obtained from the Lasso regression model for each cluster are calculated 

using Equation (4). 

𝑦̂𝑖 = 
∑ 𝑦̂𝑖𝑘µ𝑖𝑘

𝑐
𝑖=1

∑ 𝑦̂𝑖𝑘
𝑐
𝑖=1

   𝑘 = 1, 2, …, 𝑛                                                                                      (4) 

3 Applications  

In this study, three different regression datasets from various domains were utilized. The 

first dataset, "Concrete Compressive Strength" (Data 1), was obtained from the UCI Machine 

Learning Repository and contains various features related to concrete mixtures. The second 

dataset, "Steel Fatigue Strength Prediction" (Data 2), was retrieved from the Kaggle platform 

and includes measurements related to materials science. The third dataset consists of Near-

Infrared (NIR) Spectroscopy data (Data 3) obtained from the “chemometrics” package in R, 

and is used for chemical content prediction. All datasets were randomly split into training 

(80%), validation (10%), and test (10%) subsets. The number of clusters (c) was determined by 

searching within the range of 2 to 5. For the Lasso regression model, the regularization 

parameter λ was optimized using cross-validation via the “cv.glmnet” function in R. All 

analyses were conducted using the R programming language. The method was evaluated in 

comparison with multiple linear regression (MLR), Ridge regression, and classical Lasso 

regression methods. Summary information and the optimal hyperparameter values selected for 

each dataset are presented in Table 1. 
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Table 1 Hyper parameter detections and datasets information 

Data No Methods 𝒏 𝒑 𝒄 𝒎  λ 

Data 1 MLR 1030 8 - - - - 

Data 1 T1FLR 1030 8 2 2 1 0.0075 

Data 1 Lasso 1030 8 - - 1 0.0075 

Data 1 Ridge 1030 8 - - 0 0.8048 

Data 2 MLR 437 25 - - - - 

Data 2 T1FLR 437 25 5 2.6 1 0.0826 

Data 2 Lasso 437 25 - - 1 0.0826 

Data 2 Ridge 437 25 - - 0 15.4752 

Data 3 MLR 166 235 - - - - 

Data 3 T1FLR 166 235 4 3 1 0.0855 

Data 3 Lasso 166 235 - - 1 0.0855 

Data 3 Ridge 166 235 - - 0 85.4942 

 

The model selection process was carried out based on the RMSE values calculated from the 

validation datasets. At this stage, the best-performing methods were identified, and the 

validation results for each dataset are presented in detail in Table 2. 

RMSE = √
1

𝑛
∑ (𝑥𝑡 − 𝑥̂𝑡)2𝑛

𝑡=1                                                                                                    (5) 

 

Table 2 RMSE values of the methods 

Methods Data 1 Data 2 Data 3 

MLR 10.0861 36.3706 131.7285 

T1FLR 9.6189 33.6250 5.3599 

Lasso 10.0895 36.8116 5.7110 

Ridge 10.3412 40.1546 10.8752 

 

According to Table 2, the T1FLR method achieved the lowest RMSE value on the 

validation dataset for each data set. Therefore, performance evaluation in the testing phase was 
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conducted based on this method. Tables 3, 5, and 7 present the performance results of the 

T1FLR method on the test datasets for Data 1, 2, and 3, respectively. 

In addition to the evaluation metrics of the T1FLR method, hypothesis testing was 

conducted based on the predicted and actual values to assess whether the differences between 

T1FLR and the other methods were statistically significant. For all datasets, the null (H₀) and 

alternative (H₁) hypotheses are defined as below, and the comparison results are presented in 

Tables 4, 6, and 8. According to Table 4 and Table 6, the differences between T1FLR and the 

Ridge method are statistically significant at the 95% confidence level. Similarly, based on Table 

8, the differences between T1FLR and both the Ridge and MLR methods are also statistically 

significant. 

H₀: There is no statistically significant difference in test error values between the T1FLR 

method and the compared methods (Lasso, Ridge, MLR) 

H₁: There is a statistically significant difference in test error values between the T1FLR method 

and the compared methods. 

Table 3 Evaluation metrics of the test dataset of Data 1 

Methods  RMSE MAE MAPE 

T1FLR 12.2986 9.9901 0.3619 
 

Table 4 Pairs Method Comparison of Data 1 

Methods       Test Type     p-value 

T1FLR vs Lasso       Wilcoxon 0.2229 

T1FLR vs Ridge       Wilcoxon 0.0464 

T1FLR vs MLR       Wilcoxon 0.2382 

 

Table 5 Evaluation metrics of the test dataset of Data 2 

Methods RMSE MAE MAPE 

T1FLR 33.4378 22.6183 0.0400 
 

Table 6 Pairs Method Comparison of Data 2 

Methods Test Type p-value 

T1FLR vs Lasso Wilcoxon 0.6281 

T1FLR vs Ridge Paired t-test 0.0093 

T1FLR vs MLR Wilcoxon 0.4543 
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Table 7 Evaluation metrics of the test dataset of Data 3 

Methods RMSE MAE MAPE 

T1FLR 4.6868 3.7433 0.4795 
 

Table 8 Pairs Method Comparison of Data 3 

Methods Test Type p-value 

T1FLR vs Lasso Wilcoxon 0.463700 

T1FLR vs Ridge Paired t-test 0.004400 

T1FLR vs MLR Wilcoxon 0.000031 

 

Conclusion  

In this study, the performance of the regression method integrating Lasso regularization 

into Type-1 Fuzzy Functions is investigated. The method was evaluated on three real-world 

datasets from different domains (concrete compressive strength, material fatigue strength, and 

chemical content prediction). Hyperparameters were optimized by minimizing the RMSE value 

on the validation dataset, and the proposed method was compared with classical regression 

techniques including MLR, Lasso, and Ridge. The application results showed that the T1FLR 

method achieved the lowest RMSE values during the validation phase across all datasets. 

Evaluations conducted on independent test datasets further confirmed the superior performance 

of T1FLR in terms of RMSE, MAE, and MAPE criteria. In future studies, it is planned to test 

the method with different feature selection techniques on various linear and nonlinear datasets, 

and to expand the hyperparameter search space. 
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