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Abstract

Fuzzy Functions (FFs), originally proposed by Turksen, represent a non-rule-based inference
method. In this approach, data are clustered using the Fuzzy C-Means (FCM) algorithm; each
observation is assigned to all clusters with specific membership degrees, and these degrees are
incorporated into the input matrix as additional variables. Turksen suggested that this expanded
input matrix could enhance the model’s predictive performance. Moreover, including functions
of the membership degrees in the model has been shown to further improve predictive accuracy.
However, such transformations can introduce a large number of correlated variables into the
input matrix, potentially leading to multicollinearity issues. In this study, it is aimed to use
Lasso regression with Type-1 Fuzzy Functions to address this issue and improve model
performance. Lasso performs variable selection by excluding ineffective or less significant
variables, thereby increasing the model’s generalizability and reducing the risk of overfitting.
The method has been evaluated on three real-world datasets, and the results show that it

outperforms the other methods included in the study.
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1 Introduction
Forecasting is essential for effective decision-making, as it enables the prediction of future
events or trends by examining past data. This structured process relies on mathematical
modeling, statistical analysis, and a variety of techniques to estimate what lies ahead. Across
fields such as business, economics, and weather forecasting, it provides a reliable basis for
planning in uncertain conditions. By interpreting patterns in historical data, forecasting supports
data-driven and strategic predictions.

Forecasting approaches are generally classified into two primary categories: statistical
and non-statistical (alternative) techniques. Statistical approaches, which rely on deterministic
structures and relatively simple models, tend to perform effectively when the underlying data

satisfies certain predefined assumptions. Nonetheless, their effectiveness significantly
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diminishes in the presence of real-world data that exhibit complexity, non-linearity, and
unpredictability.

Contemporary forecasting research has increasingly focused on alternative
methodologies, including artificial intelligence (Al) and fuzzy logic, which offer enhanced
flexibility and accuracy compared to conventional techniques. Al, particularly through
advanced machine learning models such as artificial neural networks (McCulloch & Pitts,
1943), is proficient in uncovering complex data structures and modeling nonlinear associations.
This strength enables forecasters to effectively process and interpret intricate and evolving
datasets, thereby facilitating a more comprehensive analysis of underlying patterns and
behaviors. On the other hand, fuzzy logic is especially advantageous in contexts involving
vagueness and uncertainty, as it accommodates gradations of truth and linguistic variables,
offering a robust solution where traditional models fall short in managing ambiguity.

Fuzzy Inference Systems (FIS), originally proposed by Zadeh (1973), serve as robust
artificial intelligence frameworks for modeling uncertainty and handling imprecise information.
At the heart of these systems lies a rule base composed of expert-defined fuzzy rules, which
articulate the relationships between inputs and outputs through "IF-THEN" constructs. These
rules apply fuzzy logic to input variables to infer corresponding outputs. Consequently, the
effectiveness of an FIS is heavily dependent on the quality and comprehensiveness of the expert
knowledge embedded in its rule set. However, this dependence poses a significant limitation,
particularly in dynamic environments, as traditional FIS lack the capacity to autonomously
adapt or learn from new data. To address this challenge, Turksen (2008) introduced type-1 fuzzy
function-based methodologies that facilitate automatic rule generation, thereby enhancing the
adaptability and learning ability of fuzzy systems.

Type-1 Fuzzy Functions (T1FFs) rely on a regression approach that utilizes both
membership degrees and their transformations as predictors. However, this structure may lead
to multicollinearity, a common issue in high-dimensional datasets, which violates the core
assumptions of Ordinary Least Squares (OLS) regression. In regression analysis,
multicollinearity increases the variance of parameter estimates, causing the model to overfit the
training data and thereby reducing its generalizability. (Bas et al., 2019-2020), (Kizilaslan et
al., 2020) and (Tak and Inan, 2022) addressed the multicollinearity problem in their studies by
using Ridge Regression. Although ridge regression can resolve multicollinearity, it does not
address the issue of overfitting. Lasso regression (Least Absolute Shrinkage and Selection
Operator) is an effective method for reducing multicollinearity and selecting important
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variables. With the L1 penalty term, it shrinks some coefficients to zero, which simplifies the
model and makes it easier to interpret. This helps prevent overfitting (Tibshirani, 1996). In
high-dimensional datasets, Lasso also improves model accuracy and generalizability by
identifying the most relevant variables (Zou & Hastie, 2005; James et al., 2013). The positive
effects of Lasso on multicollinearity and overfitting have been supported by various studies in
the literature. For example, Kok¢ii and Gengtiirk (2021) demonstrated the effectiveness of
Lasso in variable selection and overfitting control in their study on environmental datasets.
Similarly, a study by Demir and Ozkan (2018) reported that Lasso yielded lower error rates
compared to classical methods and provided more stable results in the presence of
multicollinearity.

T1FFs use the Fuzzy C-Means (FCM) algorithm to determine the membership degrees
included in the input matrix. The clustering process is critically important for identifying
accurate patterns, and therefore, extensive research has been conducted on clustering algorithms
in the literature. Specifically, the FCM algorithm, originally proposed by Dunn (1973) and later
developed by Bezdek (1984), is among the most widely used fuzzy clustering methods. The
obtained membership degrees and functions are incorporated into the model by adding them to
the input matrix. In this context, Celikyilmaz and Tiirksen (2009) stated that applying
mathematical transformations such as exponential and logarithmic to the membership degrees
could improve the prediction performance of T1FFs. These transformations make the model
more flexible and generalizable.

However, this extended structure may lead to high correlations among explanatory
variables, causing modeling issues such as multicollinearity and overfitting. In this study, to
mitigate these problems and balance model complexity through variable selection, the Type-1
Fuzzy Lasso Regression (T1FLR) method was employed, which integrates the Lasso regression
technique within the framework of Type-1 Fuzzy Functions. In this way, it is aimed to

overcome both multicollinearity and overfitting issues.

2 Method

The primary objective of clustering methods is to group observations with similar
characteristics while separating those that differ significantly. In this process, the accurate
determination of cluster centers plays a critical role. In the Type-1 Fuzzy Functions (T1FFs)
framework, data are clustered using the Fuzzy C-Means (FCM) algorithm, where each

observation is assigned to all clusters with specific degrees of membership. These membership
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degrees and corresponding functions are then incorporated into the input matrix and included
in the model. However, this extended structure may introduce high correlations among
explanatory variables, leading to issues such as multicollinearity and overfitting. To mitigate
these problems, the Lasso regression technique is employed within the T1FF framework in this
study. By performing variable selection, Lasso retains only the most relevant predictors in the
model, thereby enhancing both its generalizability and interpretability. The detailed steps and
overall structure of the method are presented below.

Fig. 1: Architecture of Fuzzy Functions with Lasso

Lasso Lasso
Equations Estimates

Outputs

Algorithm 1:
Step 1: The fuzziness parameter m and the number of clusters c are selected.

Step 2: The input matrix X € R™P? is clustered using FCM, and the membership degrees and

cluster centers are obtained.

Step 2.1: Calculate the membership value using the formula in Equation (1):

d(xk,v]-

2 -1
MHik = [ §=1 (M)mﬂ] i=1.2,...,c;k=12,...,n (1)

Here, x denotes the input matrix, v represents the cluster centers, d(-) is the Euclidean distance
function, c¢ is the number of clusters, and m is the fuzziness parameter, as shown in Equations

(1) and (2).
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Step 2.2 Update the cluster centers using the formula in Equation (2):

Yher (M) ™ixg
vi Tho1(uig)™i (2)

Step 2.3 Repeat Steps 2.1 and 2.2 until the difference between cluster centers in two

consecutive iterations falls below a predefined threshold, or until the maximum number

of iterations is reached.

Step 3: Adding the membership degrees and their functions to the input matrix, the X and Y

matrices corresponding to the i-th cluster are obtained as follows.:

Vi [Hu M MG eMa xgp xpl]
Y = yz )X = |H.l2 ”1‘22 ln(HLZ) eulz x12 " xpz ) i = 1; 2; ---]C

Yn lp-in H;‘Zn ln(llin) ellin X1n - xan

Step 4: For each cluster, a regression model is fitted using Lasso to perform parameter

estimation and feature selection simultaneously.
arg ming {¥5,(y® — (X)7BO)* + 2 ||BY|| } fori=1,2, .. c 3)

StepS: The predictions obtained from the Lasso regression model for each cluster are calculated

using Equation (4).

o — Zi=a VikMik g, —
Vi T k=12 ..,n (4)

3 Applications

In this study, three different regression datasets from various domains were utilized. The
first dataset, "Concrete Compressive Strength" (Data 1), was obtained from the UCI Machine
Learning Repository and contains various features related to concrete mixtures. The second
dataset, "Steel Fatigue Strength Prediction" (Data 2), was retrieved from the Kaggle platform
and includes measurements related to materials science. The third dataset consists of Near-
Infrared (NIR) Spectroscopy data (Data 3) obtained from the “chemometrics” package in R,
and is used for chemical content prediction. All datasets were randomly split into training
(80%), validation (10%), and test (10%) subsets. The number of clusters (c¢) was determined by
searching within the range of 2 to 5. For the Lasso regression model, the regularization
parameter A was optimized using cross-validation via the “cv.glmnet” function in R. All
analyses were conducted using the R programming language. The method was evaluated in
comparison with multiple linear regression (MLR), Ridge regression, and classical Lasso
regression methods. Summary information and the optimal hyperparameter values selected for
each dataset are presented in Table 1.
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Table 1 Hyper parameter detections and datasets information

Data No Methods n P c m a A
Data 1 MLR 1030 8 - - - -
Data 1 T1FLR 1030 8 2 2 1 0.0075
Data 1 Lasso 1030 8 - - 1 0.0075
Data 1 Ridge 1030 8 - - 0 0.8048
Data 2 MLR 437 25 - - - -
Data 2 T1FLR 437 25 5 2.6 1 0.0826
Data 2 Lasso 437 25 - - 1 0.0826
Data 2 Ridge 437 25 - - 0 15.4752
Data 3 MLR 166 235 - - - -
Data 3 T1FLR 166 235 4 3 1 0.0855
Data 3 Lasso 166 235 - - 1 0.0855
Data 3 Ridge 166 235 - - 0 85.4942

The model selection process was carried out based on the RMSE values calculated from the
validation datasets. At this stage, the best-performing methods were identified, and the

validation results for each dataset are presented in detail in Table 2.

RMSE= |11, (x, - 202 )

Table 2 RMSE values of the methods

Methods Datal Data2 Data 3
MLR 10.0861 36.3706 131.7285

TIFLR  9.6189 33.6250 5.3599

Lasso 10.0895 36.8116 5.7110
Ridge 10.3412 40.1546 10.8752

According to Table 2, the TIFLR method achieved the lowest RMSE value on the

validation dataset for each data set. Therefore, performance evaluation in the testing phase was
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conducted based on this method. Tables 3, 5, and 7 present the performance results of the
T1FLR method on the test datasets for Data 1, 2, and 3, respectively.

In addition to the evaluation metrics of the TIFLR method, hypothesis testing was
conducted based on the predicted and actual values to assess whether the differences between
T1FLR and the other methods were statistically significant. For all datasets, the null (Ho) and
alternative (H:) hypotheses are defined as below, and the comparison results are presented in
Tables 4, 6, and 8. According to Table 4 and Table 6, the differences between TIFLR and the
Ridge method are statistically significant at the 95% confidence level. Similarly, based on Table
8, the differences between T1FLR and both the Ridge and MLR methods are also statistically
significant.

Ho: There is no statistically significant difference in test error values between the TIFLR
method and the compared methods (Lasso, Ridge, MLR)

Hi: There is a statistically significant difference in test error values between the T1FLR method
and the compared methods.

Table 3 Evaluation metrics of the test dataset of Data 1

Methods RMSE MAE MAPE
TI1FLR 12.2986 9.9901 0.3619

Table 4 Pairs Method Comparison of Data 1

Methods Test Type p-value
TI1FLR vs Lasso Wilcoxon 0.2229
T1FLR vs Ridge Wilcoxon 0.0464
TI1FLR vs MLR Wilcoxon 0.2382

Table 5 Evaluation metrics of the test dataset of Data 2

Methods RMSE MAE MAPE
TIFLR 33.4378 22.6183 0.0400

Table 6 Pairs Method Comparison of Data 2

Methods Test Type p-value
TI1FLR vs Lasso Wilcoxon 0.6281
T1FLR vs Ridge Paired t-test 0.0093
T1FLR vs MLR Wilcoxon 0.4543
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Table 7 Evaluation metrics of the test dataset of Data 3

Methods RMSE MAE MAPE
TI1FLR 4.6868 3.7433  0.4795

Table 8 Pairs Method Comparison of Data 3

Methods Test Type p-value
T1FLR vs Lasso  Wilcoxon 0.463700
T1FLR vs Ridge  Paired t-test 0.004400
T1FLR vs MLR Wilcoxon 0.000031

Conclusion

In this study, the performance of the regression method integrating Lasso regularization
into Type-1 Fuzzy Functions is investigated. The method was evaluated on three real-world
datasets from different domains (concrete compressive strength, material fatigue strength, and
chemical content prediction). Hyperparameters were optimized by minimizing the RMSE value
on the validation dataset, and the proposed method was compared with classical regression
techniques including MLR, Lasso, and Ridge. The application results showed that the TIFLR
method achieved the lowest RMSE values during the validation phase across all datasets.
Evaluations conducted on independent test datasets further confirmed the superior performance
of TIFLR in terms of RMSE, MAE, and MAPE criteria. In future studies, it is planned to test
the method with different feature selection techniques on various linear and nonlinear datasets,

and to expand the hyperparameter search space.
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